Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Food Nutr Res ; 110: 197-241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38906587

RESUMO

This chapter provides an overarching view of the multifaceted aspects of milk ß-casein, focusing on its genetic variants A1 and A2. The work examines the current landscape of A1-free milk versus regular milk, delving into health considerations, protein detection methods, technological impacts on dairy production, non-bovine protein, and potential avenues for future research. Firstly, it discussed ongoing debates surrounding categorizing milk based on A1 and A2 ß-casein variants, highlighting challenges in establishing clear regulatory standards and quality control methods. The chapter also addressed the molecular distinction between A1 and A2 variants at position 67 of the amino acid chain. This trait affects protein conformation, casein micelle properties, and enzymatic susceptibility. Variations in ß-casein across animal species are acknowledged, casting doubt on non-bovine claims of "A2-like" milk due to terminology and genetic differences. Lastly, this work explores the burgeoning field of biotechnology in milk production.


Assuntos
Caseínas , Leite , Animais , Leite/química , Bovinos , Humanos
2.
Crit Rev Food Sci Nutr ; 63(26): 8261-8274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35352976

RESUMO

Mothers' food and water consumption appear to be determining factors for infants' potentially toxic elements exposure through human milk. Therefore, this systematic review aimed to assess correlations between As, Cd, Hg, Pb and/or Sn concentration in human milk and breastfeeding mothers' food consumption, with later infants' health risk assessment. Estimated Daily Intakes of such elements by infants were also calculated and compared with reference values (RfD or BMDL01). Among 5.663 identified studies, 23 papers remained for analysis. Potentially toxic elements concentration in human milk presented positive correlation with seafood (As, Hg), fresh vegetables (Hg, Cd), cereals (Hg, Cd), cheese, rice, potatoes, private and well-water supply (Pb), wild meat (Pb, Cd) and milk, dairy products, dried fruits and oilseeds (Cd) mothers' consumption. Red meat, caffeinated drinks, and dairy products consume presented negative correlations (Pb). No correlations were found for Sn. Infants from three studies presented high Hg exposition through human milk (> 0. 1 µg/kg PC-1 day-1), as well as observed for Pb in one study (> 0. 5 µg/kg PC-1 day-1). Potentially toxic elements can damage infants' health when they are present in mothers' diet due to the infants' high vulnerability. Therefore, these results raise important issues for public health.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2056869 .


Assuntos
Mercúrio , Leite Humano , Feminino , Humanos , Lactente , Leite Humano/química , Cádmio/análise , Aleitamento Materno , Chumbo , Mercúrio/toxicidade , Medição de Risco
3.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35876099

RESUMO

Milk and dairy products present considerable socioeconomic importance but are also a regular pesticide residue contamination source, which is considered a worldwide public health concern and a major international trade issue. Thus, a literature review was conducted to assess pesticide residue levels in milk and dairy products, as well as the residue degradation capacity during its processing. Organochlorine, organophosphate, synthetic pyrethroid and/or triazine were found in fluid milk, powder products, yogurts, cheese, butter, and sour cream. Thermal processing reduced most residue levels, although some treatments increased total hexachlorocyclohexane and its isomers (α-, γ-, δ-, and ß-). Emerging non-thermal treatments presented promising results, but some by-products had higher toxicity than their precursors. Biodegradation by lactic acid bacteria were effective during yogurt and cheese fermentation. However, ß-hexachlorocyclohexane level seems to increase in yogurts containing Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis, while increase or maintenance of pesticide residue concentration was observed during coagulation and cheese maturation. Deep research is needed to understand the isomerization and degradation mechanisms after thermal, non-thermal, and fermentation processing. Emerging heat technology can be an excellent topic to be investigated for pesticide residues degradation in the future. These mitigation approaches can be a feasible future alternative to milk and dairy production.

4.
Adv Food Nutr Res ; 100: 211-264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35659353

RESUMO

The concern with food safety in the milk chain begins with the quality of the raw milk. Due to the health hazard that this food can carry when contaminated, the focus of studies has turned to microbiological and chemical contaminants that may be present in raw milk. There is an essential concern about conventional pathogens (Shiga toxin-producing Escherichia coli, Salmonella spp., Listeria monocytogenes, Campylobacter spp., Salmonella spp., and coagulase-positive Staphylococcus spp.) and emerging pathogens (Arcobacter butzleri, Yersinia enterocolitica, Mycobacterium avium ssp. paratuberculosis, Helicobacter pylori, and Cronobacter sakazakii) found in raw milk and dairy products. In addition, a growing public health issue has been raised regarding antimicrobial-resistant pathogens and commensal strains found in milk and dairy products. The antibiotic residues in milk can also damage health, such as allergies, and cause technological problems in dairy products processing. This health issue extends to other chemical contaminants such as heavy metals, pesticides, polycyclic aromatic hydrocarbons, melamine, dioxins, polychlorinated biphenyls, plasticizers, and additives in milk and dairy products. Other chemical substances formed by microorganisms are also of high importance, such as biogenic amines and mycotoxins. Therefore, this chapter aimed to revise and discuss relevant biological and chemical risks to ensure the safety and quality of raw milk and dairy products.


Assuntos
Listeria monocytogenes , Leite , Animais , Microbiologia de Alimentos , Leite/microbiologia , Salmonella
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...