Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cell Cycle ; : 1-12, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984667

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide. In the United States alone, CRC was responsible for approximately 52,550 deaths in 2023, with an estimated 153,020 new cases. CRC presents with synchronous peritoneal spread in 5-10% of patients, and up to 20-50% of patients with recurrent disease will develop metachronous colorectal cancer peritoneal metastatic (CRC-PM) disease. Eradication of the tumor, tumor margins and microscopic residual disease is paramount, as microscopic residual disease is associated with local recurrences, with 5-year survival rates of less than 35%. The success of resection and reduction of residual disease depends on the accuracy with which cancer cells and normal tissue can be intra-operatively distinguished. Fluorescence Molecular Imaging (IFMI) and tumor-targeted contrast agents represent a promising approach for intraoperative detection and surgical intervention. Proper target selection, the development of scalable imaging agents and enhanced real-time tumor and tumor microenvironment imaging are critical to enabling enhanced surgical resection. LGR5 (leucine-rich repeat-containing G-protein-coupled receptor 5), a colonic crypt stem cell marker and the receptor for the R-spondins (RSPO) in the Wnt signaling pathway, is also expressed on colorectal cancer stem cells (CSC) and on CRC tumors and metastases, suggesting it could be a useful target for imaging of CRC. However, there are numerous diverging reports on the role of LGR5 in CRC therapy and outcomes. Herein, we report on the synthesis and validation of a 37 amino acid RSPO1-mimetic peptide, termed RC18, that was specifically designed to access the R-spondin binding site of LGR5 to potentially be used for interoperative imaging of CRC-PM. The receptor-binding capabilities of the RC18 indicate that direct interactions with LGR5 neither significantly increased LGR5 signaling nor blocked RSPO1 binding and signal transduction, suggesting that the RSPO1-mimetic is functionally inert, making it an attractive contrast agent for intraoperative CRC-PM imaging.

2.
Science ; 384(6700): eadk0850, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843329

RESUMO

To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Neoplasias Pancreáticas , Fosfoproteínas , Proteoma , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células HEK293
3.
NPJ Precis Oncol ; 8(1): 124, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822082

RESUMO

Acquired resistance remains a major challenge for therapies targeting oncogene activated pathways. KRAS is the most frequently mutated oncogene in human cancers, yet strategies targeting its downstream signaling kinases have failed to produce durable treatment responses. Here, we developed multiple models of acquired resistance to dual-mechanism ERK/MAPK inhibitors across KRAS-mutant pancreatic, colorectal, and lung cancers, and then probed the long-term events enabling survival against this class of drugs. These studies revealed that resistance emerges secondary to large-scale transcriptional adaptations that are diverse and cell line-specific. Transcriptional reprogramming extends beyond the well-established early response, and instead represents a dynamic, evolved process that is refined to attain a stably resistant phenotype. Mechanistic and translational studies reveal that resistance to dual-mechanism ERK/MAPK inhibition is broadly susceptible to manipulation of the epigenetic machinery, and that Mediator kinase, in particular, can be co-targeted at a bottleneck point to prevent diverse, cell line-specific resistance programs.

5.
NPJ Precis Oncol ; 8(1): 68, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480868

RESUMO

We performed a deep proteogenomic analysis of bulk tumor and laser microdissection enriched tumor cell populations from high-grade serous ovarian cancer (HGSOC) tissue specimens spanning a broad spectrum of purity. We identified patients with longer progression-free survival had increased immune-related signatures and validated proteins correlating with tumor-infiltrating lymphocytes in 65 tumors from an independent cohort of HGSOC patients, as well as with overall survival in an additional 126 HGSOC patient cohort. We identified that homologous recombination deficient (HRD) tumors are enriched in pathways associated with metabolism and oxidative phosphorylation that we validated in independent patient cohorts. We further identified that polycomb complex protein BMI-1 is elevated in HR proficient (HRP) tumors, that elevated BMI-1 correlates with poor overall survival in HRP but not HRD HGSOC patients, and that HRP HGSOC cells are uniquely sensitive to BMI-1 inhibition.

6.
Cancer Rep (Hoboken) ; 7(3): e1954, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38441358

RESUMO

BACKGROUND: Overexpression of HER2 plays an important role in cancer progression and is the target of multiple therapies in HER2-positive breast cancer. Recent studies have also highlighted the presence of activating mutations in HER2, and HER3 that are predicted to enhance HER2 downstream pathway activation in a HER2-dependent manner. METHODS: In this report, we present two exceptional responses in hormone receptor-positive, HER2-nonamplified, HER2/HER3 co-mutated metastatic breast cancer patients who were treated with the anti-HER2-directed monoclonal antibodies, trastuzumab and pertuzumab. RESULTS: Both patients acheived exceptional responses to treatment, suggesting that combined trastuzumab, pertuzumab, and endocrine therapy could be a highly effective therapy for these patients and our observations could help prioritize trastuzumab deruxtecan as an early therapeutic choice for patients whose cancers have activating mutations in HER2.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Anticorpos Monoclonais Humanizados , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Mutação , Trastuzumab/uso terapêutico
7.
Clin Proteomics ; 21(1): 4, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254014

RESUMO

BACKGROUND: Although uterine serous carcinoma (USC) represents a small proportion of all uterine cancer cases, patients with this aggressive subtype typically have high rates of chemotherapy resistance and disease recurrence that collectively result in a disproportionately high death rate. The goal of this study was to provide a deeper view of the tumor microenvironment of this poorly characterized uterine cancer variant through multi-region microsampling and quantitative proteomics. METHODS: Tumor epithelium, tumor-involved stroma, and whole "bulk" tissue were harvested by laser microdissection (LMD) from spatially resolved levels from nine USC patient tumor specimens and underwent proteomic analysis by mass spectrometry and reverse phase protein arrays, as well as transcriptomic analysis by RNA-sequencing for one patient's tumor. RESULTS: LMD enriched cell subpopulations demonstrated varying degrees of relatedness, indicating substantial intratumor heterogeneity emphasizing the necessity for enrichment of cellular subpopulations prior to molecular analysis. Known prognostic biomarkers were quantified with stable levels in both LMD enriched tumor and stroma, which were shown to be highly variable in bulk tissue. These USC data were further used in a comparative analysis with a data generated from another serous gynecologic malignancy, high grade serous ovarian carcinoma, and have been added to our publicly available data analysis tool, the Heterogeneity Analysis Portal ( https://lmdomics.org/ ). CONCLUSIONS: Here we identified extensive three-dimensional heterogeneity within the USC tumor microenvironment, with disease-relevant biomarkers present in both the tumor and the stroma. These data underscore the critical need for upfront enrichment of cellular subpopulations from tissue specimens for spatial proteogenomic analysis.

8.
Sci Signal ; 16(816): eadg5289, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113333

RESUMO

Cancer-associated mutations in the guanosine triphosphatase (GTPase) RHOA are found at different locations from the mutational hotspots in the structurally and biochemically related RAS. Tyr42-to-Cys (Y42C) and Leu57-to-Val (L57V) substitutions are the two most prevalent RHOA mutations in diffuse gastric cancer (DGC). RHOAY42C exhibits a gain-of-function phenotype and is an oncogenic driver in DGC. Here, we determined how RHOAL57V promotes DGC growth. In mouse gastric organoids with deletion of Cdh1, which encodes the cell adhesion protein E-cadherin, the expression of RHOAL57V, but not of wild-type RHOA, induced an abnormal morphology similar to that of patient-derived DGC organoids. RHOAL57V also exhibited a gain-of-function phenotype and promoted F-actin stress fiber formation and cell migration. RHOAL57V retained interaction with effectors but exhibited impaired RHOA-intrinsic and GAP-catalyzed GTP hydrolysis, which favored formation of the active GTP-bound state. Introduction of missense mutations at KRAS residues analogous to Tyr42 and Leu57 in RHOA did not activate KRAS oncogenic potential, indicating distinct functional effects in otherwise highly related GTPases. Both RHOA mutants stimulated the transcriptional co-activator YAP1 through actin dynamics to promote DGC progression; however, RHOAL57V additionally did so by activating the kinases IGF1R and PAK1, distinct from the FAK-mediated mechanism induced by RHOAY42C. Our results reveal that RHOAL57V and RHOAY42C drive the development of DGC through distinct biochemical and signaling mechanisms.


Assuntos
Neoplasias Gástricas , Animais , Humanos , Camundongos , Actinas , Guanosina Trifosfato , Quinases Ativadas por p21 , Proteínas Proto-Oncogênicas p21(ras) , Receptor IGF Tipo 1 , Proteína rhoA de Ligação ao GTP/genética , Transdução de Sinais , Neoplasias Gástricas/genética
9.
Res Sq ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961649

RESUMO

Acquired resistance remains a major challenge for therapies targeting oncogene activated pathways. KRAS is the most frequently mutated oncogene in human cancers, yet strategies targeting its downstream signaling kinases have failed to produce durable treatment responses. Here, we developed multiple models of acquired resistance to dual-mechanism ERK/MAPK inhibitors across KRAS-mutant pancreatic, colorectal, and lung cancers, and then probed the long-term events enabling survival against this class of drugs. These studies revealed that resistance emerges secondary to large-scale transcriptional adaptations that are diverse and cell line-specific. Transcriptional reprogramming extends beyond the well-established early response, and instead represents a dynamic, evolved process that is refined to attain a stably resistant phenotype. Mechanistic and translational studies reveal that resistance to dual-mechanism ERK/MAPK inhibition is broadly susceptible to manipulation of the epigenetic machinery, and that Mediator kinase, in particular, can be co-targeted at a bottleneck point to prevent diverse, cell line-specific resistance programs.

11.
JAMA Netw Open ; 6(9): e2333618, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37707814

RESUMO

Importance: Breast cancer mortality is complex and traditional approaches that seek to identify determinants of mortality assume that their effects on mortality are stationary across geographic space and scales. Objective: To identify geographic variation in the associations of population demographics, environmental, lifestyle, and health care access with breast cancer mortality at the US county-level. Design, Setting, and Participants: This geospatial cross-sectional study used data from the Surveillance, Epidemiology, and End Results (SEER) database on adult female patients with breast cancer. Statistical and spatial analysis was completed using adjusted mortality rates from 2015 to 2019 for 2176 counties in the US. Data were analyzed July 2022. Exposures: County-level population demographics, environmental, lifestyle, and health care access variables were obtained from open data sources. Main Outcomes and Measures: Model coefficients describing the association between 18 variables and age-adjusted breast cancer mortality rate. Compared with a multivariable linear regression (OLS), multiscale geographically weighted regression (MGWR) relaxed the assumption of spatial stationarity and allowed for the magnitude, direction, and significance of coefficients to change across geographic space. Results: Both OLS and MGWR models agreed that county-level age-adjusted breast cancer mortality rates were significantly positively associated with obesity (OLS: ß, 1.21; 95% CI, 0.88 to 1.54; mean [SD] MGWR: ß, 0.72 [0.02]) and negatively associated with proportion of adults screened via mammograms (OLS: ß, -1.27; 95% CI, -1.70 to -0.84; mean [SD] MGWR: ß, -1.07 [0.16]). Furthermore, the MGWR model revealed that these 2 determinants were associated with a stationary effect on mortality across the US. However, the MGWR model provided important insights on other county-level factors differentially associated with breast cancer mortality across the US. Both models agreed that smoking (OLS: ß, -0.65; 95% CI, -0.98 to -0.32; mean [SD] MGWR: ß, -0.75 [0.92]), food environment index (OLS: ß, -1.35; 95% CI, -1.72 to -0.98; mean [SD] MGWR: ß, -1.69 [0.70]), exercise opportunities (OLS: ß, -0.56; 95% CI, -0.91 to -0.21; mean [SD] MGWR: ß, -0.59 [0.81]), racial segregation (OLS: ß, -0.60; 95% CI, -0.89 to -0.31; mean [SD] MGWR: ß, -0.47 [0.41]), mental health care physician ratio (OLS: ß, -0.93; 95% CI, -1.44 to -0.42; mean [SD] MGWR: ß, -0.48 [0.92]), and primary care physician ratio (OLS: ß, -1.46; 95% CI, -2.13 to -0.79; mean [SD] MGWR: ß, -1.06 [0.57]) were negatively associated with breast cancer mortality, and that light pollution was positively associated (OLS: ß, 0.48; 95% CI, 0.24 to 0.72; mean [SD] MGWR: ß, 0.27 [0.04]). But in the MGWR model, the magnitude of effect sizes and significance varied across geographical regions. Inversely, the OLS model found that disability was not a significant variable for breast cancer mortality, yet the MGWR model found that it was significantly positively associated in some geographical locations. Conclusions and Relevance: This cross-sectional study found that not all social determinants associated with breast cancer mortality are spatially stationary and provides spatially explicit insights for public health practitioners to guide geographically targeted interventions.


Assuntos
Neoplasias da Mama , Adulto , Feminino , Humanos , Estudos Transversais , Determinantes Sociais da Saúde , Mama , Mamografia
12.
Bioengineering (Basel) ; 10(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37370621

RESUMO

Artificial intelligence and emerging data science techniques are being leveraged to interpret medical image scans. Traditional image analysis relies on visual interpretation by a trained radiologist, which is time-consuming and can, to some degree, be subjective. The development of reliable, automated diagnostic tools is a key goal of radiomics, a fast-growing research field which combines medical imaging with personalized medicine. Radiomic studies have demonstrated potential for accurate lung cancer diagnoses and prognostications. The practice of delineating the tumor region of interest, known as segmentation, is a key bottleneck in the development of generalized classification models. In this study, the incremental multiple resolution residual network (iMRRN), a publicly available and trained deep learning segmentation model, was applied to automatically segment CT images collected from 355 lung cancer patients included in the dataset "Lung-PET-CT-Dx", obtained from The Cancer Imaging Archive (TCIA), an open-access source for radiological images. We report a failure rate of 4.35% when using the iMRRN to segment tumor lesions within plain CT images in the lung cancer CT dataset. Seven classification algorithms were trained on the extracted radiomic features and tested for their ability to classify different lung cancer subtypes. Over-sampling was used to handle unbalanced data. Chi-square tests revealed the higher order texture features to be the most predictive when classifying lung cancers by subtype. The support vector machine showed the highest accuracy, 92.7% (0.97 AUC), when classifying three histological subtypes of lung cancer: adenocarcinoma, small cell carcinoma, and squamous cell carcinoma. The results demonstrate the potential of AI-based computer-aided diagnostic tools to automatically diagnose subtypes of lung cancer by coupling deep learning image segmentation with supervised classification. Our study demonstrated the integrated application of existing AI techniques in the non-invasive and effective diagnosis of lung cancer subtypes, and also shed light on several practical issues concerning the application of AI in biomedicine.

13.
NPJ Precis Oncol ; 7(1): 18, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797347

RESUMO

Endocrine therapy (ET) in combination with CDK4/6 inhibition is routinely used as first-line treatment for HR+/HER2- metastatic breast cancer (MBC) patients. However, 30-40% of patients quickly develop disease progression. In this open-label multicenter clinical trial, we utilized a hypothesis-driven protein/phosphoprotein-based approach to identify predictive markers of response to ET plus CDK4/6 inhibition in pre-treatment tissue biopsies. Pathway-centered signaling profiles were generated from microdissected tumor epithelia and surrounding stroma/immune cells using the reverse phase protein microarray. Phosphorylation levels of the CDK4/6 downstream substrates Rb (S780) and FoxM1 (T600) were higher in patients with progressive disease (PD) compared to responders (p = 0.02). Systemic PI3K/AKT/mTOR activation in tumor epithelia and stroma/immune cells was detected in patients with PD. This activation was not explained by underpinning genomic alterations alone. As the number of FDA-approved targeted compounds increases, functional protein-based signaling analyses may become a critical component of response prediction and treatment selection for MBC patients.

14.
Cancer Res ; 83(1): 141-157, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36346366

RESUMO

Mutational loss of CDKN2A (encoding p16INK4A) tumor-suppressor function is a key genetic step that complements activation of KRAS in promoting the development and malignant growth of pancreatic ductal adenocarcinoma (PDAC). However, pharmacologic restoration of p16INK4A function with inhibitors of CDK4 and CDK6 (CDK4/6) has shown limited clinical efficacy in PDAC. Here, we found that concurrent treatment with both a CDK4/6 inhibitor (CDK4/6i) and an ERK-MAPK inhibitor (ERKi) synergistically suppresses the growth of PDAC cell lines and organoids by cooperatively blocking CDK4/6i-induced compensatory upregulation of ERK, PI3K, antiapoptotic signaling, and MYC expression. On the basis of these findings, a Phase I clinical trial was initiated to evaluate the ERKi ulixertinib in combination with the CDK4/6i palbociclib in patients with advanced PDAC (NCT03454035). As inhibition of other proteins might also counter CDK4/6i-mediated signaling changes to increase cellular CDK4/6i sensitivity, a CRISPR-Cas9 loss-of-function screen was conducted that revealed a spectrum of functionally diverse genes whose loss enhanced CDK4/6i growth inhibitory activity. These genes were enriched around diverse signaling nodes, including cell-cycle regulatory proteins centered on CDK2 activation, PI3K-AKT-mTOR signaling, SRC family kinases, HDAC proteins, autophagy-activating pathways, chromosome regulation and maintenance, and DNA damage and repair pathways. Novel therapeutic combinations were validated using siRNA and small-molecule inhibitor-based approaches. In addition, genes whose loss imparts a survival advantage were identified (e.g., RB1, PTEN, FBXW7), suggesting possible resistance mechanisms to CDK4/6 inhibition. In summary, this study has identified novel combinations with CDK4/6i that may have clinical benefit to patients with PDAC. SIGNIFICANCE: CRISPR-Cas9 screening and protein activity mapping reveal combinations that increase potency of CDK4/6 inhibitors and overcome drug-induced compensations in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas
15.
Elife ; 112022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069770

RESUMO

Despite multiple possible oncogenic mutations in the proto-oncogene KRAS, unique subsets of these mutations are detected in different cancer types. As KRAS mutations occur early, if not being the initiating event, these mutational biases are ostensibly a product of how normal cells respond to the encoded oncoprotein. Oncogenic mutations can impact not only the level of active oncoprotein, but also engagement with proteins. To attempt to separate these two effects, we generated four novel Cre-inducible (LSL) Kras alleles in mice with the biochemically distinct G12D or Q61R mutations and encoded by native (nat) rare or common (com) codons to produce low or high protein levels. While there were similarities, each allele also induced a distinct transcriptional response shortly after activation in vivo. At one end of the spectrum, activating the KrasLSL-natG12D allele induced transcriptional hallmarks suggestive of an expansion of multipotent cells, while at the other end, activating the KrasLSL-comQ61R allele led to hallmarks of hyperproliferation and oncogenic stress. Evidence suggests that these changes may be a product of signaling differences due to increased protein expression as well as the specific mutation. To determine the impact of these distinct responses on RAS mutational patterning in vivo, all four alleles were globally activated, revealing that hematolymphopoietic lesions were permissive to the level of active oncoprotein, squamous tumors were permissive to the G12D mutant, while carcinomas were permissive to both these features. We suggest that different KRAS mutations impart unique signaling properties that are preferentially capable of inducing tumor initiation in a distinct cell-specific manner.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Genes ras , Camundongos , Mutação , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
16.
Cell Rep Methods ; 2(8): 100271, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36046628

RESUMO

Clonal evolution and lineage plasticity are key contributors to tumor heterogeneity and response to treatment in cancer. However, capturing signal transduction events in coexisting clones remains challenging from a technical perspective. In this study, we developed and tested a signal-transduction-based workflow to isolate and profile coexisting clones within a complex cellular system like non-small cell lung cancers (NSCLCs). Cooccurring clones were isolated under immunohistochemical guidance using laser-capture microdissection, and cell signaling activation portraits were measured using the reverse-phase protein microarray. To increase the translational potential of this work and capture druggable vulnerabilities within different clones, we measured expression/activation of a panel of key drug targets and downstream substrates of FDA-approved or investigational agents. We isolated intermixed clones, including poorly represented ones (<5% of cells), within the tumor microecology and identified molecular characteristics uniquely attributable to cancer cells that undergo lineage plasticity and neuroendocrine transdifferentiation in NSCLCs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Microdissecção e Captura a Laser , Transdução de Sinais , Neoplasias Pulmonares/genética , Lasers
17.
Sci Signal ; 15(746): eabn2694, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35944066

RESUMO

Missense mutations at the three hotspots in the guanosine triphosphatase (GTPase) RAS-Gly12, Gly13, and Gln61 (commonly known as G12, G13, and Q61, respectively)-occur differentially among the three RAS isoforms. Q61 mutations in KRAS are infrequent and differ markedly in occurrence. Q61H is the predominant mutant (at 57%), followed by Q61R/L/K (collectively 40%), and Q61P and Q61E are the rarest (2 and 1%, respectively). Probability analysis suggested that mutational susceptibility to different DNA base changes cannot account for this distribution. Therefore, we investigated whether these frequencies might be explained by differences in the biochemical, structural, and biological properties of KRASQ61 mutants. Expression of KRASQ61 mutants in NIH 3T3 fibroblasts and RIE-1 epithelial cells caused various alterations in morphology, growth transformation, effector signaling, and metabolism. The relatively rare KRASQ61E mutant stimulated actin stress fiber formation, a phenotype distinct from that of KRASQ61H/R/L/P, which disrupted actin cytoskeletal organization. The crystal structure of KRASQ61E was unexpectedly similar to that of wild-type KRAS, a potential basis for its weak oncogenicity. KRASQ61H/L/R-mutant pancreatic ductal adenocarcinoma (PDAC) cell lines exhibited KRAS-dependent growth and, as observed with KRASG12-mutant PDAC, were susceptible to concurrent inhibition of ERK-MAPK signaling and of autophagy. Our results uncover phenotypic heterogeneity among KRASQ61 mutants and support the potential utility of therapeutic strategies that target KRASQ61 mutant-specific signaling and cellular output.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Actinas , Carcinoma Ductal Pancreático/genética , GTP Fosfo-Hidrolases/genética , Humanos , Mutação , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas
18.
Nat Cancer ; 3(7): 837-851, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668193

RESUMO

Selinexor is a first-in-class inhibitor of the nuclear exportin XPO1 that was recently approved by the US Food and Drug Administration for the treatment of multiple myeloma and diffuse large B-cell lymphoma. In relapsed/refractory acute myeloid leukemia (AML), selinexor has shown promising activity, suggesting that selinexor-based combination therapies may have clinical potential. Here, motivated by the hypothesis that selinexor's nuclear sequestration of diverse substrates imposes pleiotropic fitness effects on AML cells, we systematically catalog the pro- and anti-fitness consequences of selinexor treatment. We discover that selinexor activates PI3Kγ-dependent AKT signaling in AML by upregulating the purinergic receptor P2RY2. Inhibiting this axis potentiates the anti-leukemic effects of selinexor in AML cell lines, patient-derived primary cultures and multiple mouse models of AML. In a syngeneic, MLL-AF9-driven mouse model of AML, treatment with selinexor and ipatasertib outperforms both standard-of-care chemotherapy and chemotherapy with selinexor. Together, these findings establish drug-induced P2RY2-AKT signaling as an actionable consequence of XPO1 inhibition in AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Carioferinas/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Estados Unidos , Proteína Exportina 1
19.
Mol Cancer Ther ; 21(5): 762-774, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247914

RESUMO

Human papilloma virus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is a common cancer worldwide with an unmet need for more effective, less toxic treatments. Currently, both the disease and the treatment of HNSCC cause significant mortality and morbidity. Targeted therapies hold new promise for patients with HPV-negative status whose tumors harbor oncogenic HRAS mutations. Recent promising clinical results have renewed interest in the development of farnesyltransferase inhibitors (FTIs) as a therapeutic strategy for HRAS-mutant cancers. With the advent of clinical evaluation of the FTI tipifarnib for the treatment of HRAS-mutant HNSCC, we investigated the activity of tipifarnib and inhibitors of HRAS effector signaling in HRAS-mutant HNSCC cell lines. First, we validated that HRAS is a cancer driver in HRAS-mutant HNSCC lines. Second, we showed that treatment with the FTI tipifarnib largely phenocopied HRAS silencing, supporting HRAS as a key target of FTI antitumor activity. Third, we performed reverse-phase protein array analyses to profile FTI treatment-induced changes in global signaling, and conducted CRISPR/Cas9 genetic loss-of-function screens to identify previously unreported genes and pathways that modulate sensitivity to tipifarnib. Fourth, we determined that concurrent inhibition of HRAS effector signaling (ERK, PI3K, mTORC1) increased sensitivity to tipifarnib treatment, in part by overcoming tipifarnib-induced compensatory signaling. We also determined that ERK inhibition could block tipifarnib-induced epithelial-to-mesenchymal transition, providing a potential basis for the effectiveness of this combination. Our results support future investigations of these and other combination treatments for HRAS mutant HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Farnesiltranstransferase/metabolismo , Farnesiltranstransferase/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
20.
Mol Oncol ; 16(1): 104-115, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34437759

RESUMO

This prospective phase II clinical trial (Side Out 2) explored the clinical benefits of treatment selection informed by multi-omic molecular profiling (MoMP) in refractory metastatic breast cancers (MBCs). Core needle biopsies were collected from 32 patients with MBC at trial enrollment. Patients had received an average of 3.94 previous lines of treatment in the metastatic setting before enrollment in this study. Samples underwent MoMP, including exome sequencing, RNA sequencing (RNA-Seq), immunohistochemistry, and quantitative protein pathway activation mapping by Reverse Phase Protein Microarray (RPPA). Clinical benefit was assessed using the previously published growth modulation index (GMI) under the hypothesis that MoMP-selected therapy would warrant further investigation for GMI ≥ 1.3 in ≥ 35% of the patients. Of the 32 patients enrolled, 29 received treatment based on their MoMP and 25 met the follow-up criteria established by the trial protocol. Molecular information was delivered to the tumor board in a median time frame of 14 days (11-22 days), and targetable alterations for commercially available agents were found in 23/25 patients (92%). Of the 25 patients, 14 (56%) reached GMI ≥ 1.3. A high level of DNA topoisomerase I (TOPO1) led to the selection of irinotecan-based treatments in 48% (12/25) of the patients. A pooled analysis suggested clinical benefit in patients with high TOPO1 expression receiving irinotecan-based regimens (GMI ≥ 1.3 in 66.7% of cases). These results confirmed previous observations that MoMP increases the frequency of identifiable actionable alterations (92% of patients). The MoMP proposed allows the identification of biomarkers that are frequently expressed in MBCs and the evaluation of their role as predictors of response to commercially available agents. Lastly, this study confirmed the role of MoMP for informing treatment selection in refractory MBC patients: more than half of the enrolled patients reached a GMI ≥ 1.3 even after multiple lines of previous therapies for metastatic disease.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Imuno-Histoquímica , Irinotecano , Estudos Prospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...