Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38794252

RESUMO

In this study, we designed the association of the organoselenium compound 5'-Seleno-(phenyl)-3'-(ferulic-amido)-thymidine (AFAT-Se), a promising innovative nucleoside analogue, with the antitumor drug paclitaxel, in poly(ε-caprolactone) (PCL)-based nanoparticles (NPs). The nanoprecipitation method was used, adding the lysine-based surfactant, 77KS, as a pH-responsive adjuvant. The physicochemical properties presented by the proposed NPs were consistent with expectations. The co-nanoencapsulation of the bioactive compounds maintained the antioxidant activity of the association and evidenced greater antiproliferative activity in the resistant/MDR tumor cell line NCI/ADR-RES, both in the monolayer/two-dimensional (2D) and in the spheroid/three-dimensional (3D) assays. Hemocompatibility studies indicated the safety of the nanoformulation, corroborating the ability to spare non-tumor 3T3 cells and human mononuclear cells of peripheral blood (PBMCs) from cytotoxic effects, indicating its selectivity for the cancerous cells. Furthermore, the synergistic antiproliferative effect was found for both the association of free compounds and the co-encapsulated formulation. These findings highlight the antitumor potential of combining these bioactives, and the proposed nanoformulation as a potentially safe and effective strategy to overcome multidrug resistance in cancer therapy.

2.
Nanomaterials (Basel) ; 13(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630891

RESUMO

Multidrug resistance (MDR) is the main challenge in cancer treatment. In this sense, we designed transferrin (Tf)-conjugated PLGA nanoparticles (NPs) containing an organoselenium compound as an alternative to enhance the efficacy of cancer therapy and sensitize MDR tumor cells. Cytotoxicity studies were performed on different sensitive tumor cell lines and on an MDR tumor cell line, and the Tf-conjugated NPs presented significantly higher antiproliferative activity than the nontargeted counterparts in all tested cell lines. Due to the promising antitumor activity of the Tf-decorated NPs, further studies were performed using the MDR cells (NCI/ADR-RES cell line) comparatively to one sensitive cell line (HeLa). The cytotoxicity of NPs was evaluated in 3D tumor spheroids and, similarly to the results achieved in the 2D assays, the Tf-conjugated NPs were more effective at reducing the spheroid's growth. The targeted Tf-NPs were also able to inhibit tumor cell migration, presented a higher cell internalization and induced a greater number of apoptotic events in both cell lines. Therefore, these findings evidenced the advantages of Tf-decorated NPs over the nontargeted counterparts, with the Tf-conjugated NPs containing an organoselenium compound representing a promising drug delivery system to overcome MDR and enhance the efficacy of cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...