Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 15(4)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37607551

RESUMO

Spheroids are microtissues containing cells organized in a spherical shape whose diameter is usually less than a millimetre. Depending on the properties of the environment they are placed in, some nearby spheroids spontaneously fuse and generate a tissue. Given their potential to mimic features typical of body parts and their ability to assemble by fusing in permissive hydrogels, they have been used as building blocks to 3D bioprint human tissue parts. Parameters controlling the shape and size of a bioprinted tissue using fusing spheroid cultures include cell composition, hydrogel properties, and their relative initial position. Hence, simulating, anticipating, and then controlling the spheroid fusion process is essential to control the shape and size of the bioprinted tissue. This study presents the first physically-based framework to simulate the fusion process of bioprinted spheroids. The simulation is based on elastic-plastic solid and fluid continuum mechanics models. Both models use the 'smoothed particle hydrodynamics' method, which is based on discretizing the continuous medium into a finite number of particles and solving the differential equations related to the physical properties (e.g. Navier-Stokes equation) using a smoothing kernel function. To further investigate the effects of such parameters on spheroid shape and geometry, we performed sensitivity and morphological analysis to validate our simulations within-vitrospheroids. Through ourin-silicosimulations by changing the aforementioned parameters, we show that the proposed models appropriately simulate the range of the elastic-plastic behaviours ofin-vitrofusing spheroids to generate tissues of desired shapes and sizes. Altogether, this study presented a physically-based simulation that can provide a framework for monitoring and controlling the geometrical shape of spheroids, directly impacting future research using spheroids for tissue bioprinting.


Assuntos
Bioimpressão , Humanos , Simulação por Computador , Hidrodinâmica , Hidrogéis , Plásticos
2.
Comput Graph ; 90: A4-A6, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32834191

RESUMO

Image, graphical abstract.

3.
IEEE Trans Vis Comput Graph ; 17(12): 1989-96, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22034316

RESUMO

Analyzing either high-frequency shape detail or any other 2D fields (scalar or vector) embedded over a 3D geometry is a complex task, since detaching the detail from the overall shape can be tricky. An alternative approach is to move to the 2D space, resolving shape reasoning to easier image processing techniques. In this paper we propose a novel framework for the analysis of 2D information distributed over 3D geometry, based on a locally smooth parametrization technique that allows us to treat local 3D data in terms of image content. The proposed approach has been implemented as a sketch-based system that allows to design with a few gestures a set of (possibly overlapping) parameterizations of rectangular portions of the surface. We demonstrate that, due to the locality of the parametrization, the distortion is under an acceptable threshold, while discontinuities can be avoided since the parametrized geometry is always homeomorphic to a disk. We show the effectiveness of the proposed technique to solve specific Cultural Heritage (CH) tasks: the analysis of chisel marks over the surface of a unfinished sculpture and the local comparison of multiple photographs mapped over the surface of an artwork. For this very difficult task, we believe that our framework and the corresponding tool are the first steps toward a computer-based shape reasoning system, able to support CH scholars with a medium they are more used to.

4.
IEEE Trans Vis Comput Graph ; 17(10): 1510-20, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21282861

RESUMO

We present an automatic method to produce a Catmull-Clark subdivision surface that fits a given input mesh. Its control mesh is coarse and adaptive, and it is obtained by simplifying an initial mesh at high resolution. Simplification occurs progressively via local operators and addresses both quality of surface and faithfulness to the input shape throughout the whole process. The method is robust and performs well on rather complex shapes. Displacement mapping or normal mapping can be applied to approximate the input shape arbitrarily well.

5.
IEEE Comput Graph Appl ; 30(4): 74-89, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20650730

RESUMO

Solid textures are an efficient way to compactly represent 3D objects' external and internal appearance, providing practical advantages over classic 2D texturing. Two main methods exist for synthesizing solid textures. Procedural methods obtain colors through functions that algorithmically encode the texture's appearance and structural properties. Example-based methods capture and replicate the appearance as described by a set of input exemplars. These methods can also be classified as boundary independent or boundary dependent. For boundary-independent methods, the shape of the object to be textured is irrelevant, and texture information can be freely generated for each point in the space. Boundary-dependent methods conform the synthesis process to the object's actual shape so that they can exploit this information to orient and guide texture generation. This article reviews the different methodologies' strengths and weaknesses, the classes of appearances they can successfully synthesize, and failure cases. In particular, it focuses on boundary-independent methods' advantages and drawbacks compared to boundary-dependent methods.

6.
IEEE Trans Vis Comput Graph ; 16(4): 621-35, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20467060

RESUMO

In this paper, we propose a robust, automatic technique to build a global hi-quality parameterization of a two-manifold triangular mesh. An adaptively chosen 2D domain of the parameterization is built as part of the process. The produced parameterization exhibits very low isometric distortion, because it is globally optimized to preserve both areas and angles. The domain is a collection of equilateral triangular 2D regions enriched with explicit adjacency relationships (it is abstract in the sense that no 3D embedding is necessary). It is tailored to minimize isometric distortion, resulting in excellent parameterization qualities, even when meshes with complex shape and topology are mapped into domains composed of a small number of large continuous regions. Moreover, this domain is, in turn, remapped into a collection of 2D square regions, unlocking many advantages found in quad-based domains (e.g., ease of packing). The technique is tested on a variety of cases, including challenging ones, and compares very favorably with known approaches. An open-source implementation is made available.


Assuntos
Algoritmos , Gráficos por Computador , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...