Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 100(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902025

RESUMO

The objective was to determine temporal changes in hematological and immune parameters in response to naturally occurring bovine respiratory disease (BRD) in commercially managed stocker calves. Forty newly weaned beef steers purchased from auction markets were housed at a commercial stocker operation in Crossville, TN. Blood samples, rectal temperature, and thoracic ultrasonography (TUS; 1: normal to 3: severe) were collected on days 0, 7, 14, and 21. Castration status (FC: freshly castrated; PC: previously castrated) was determined on arrival based on presence of a fresh castration site at the scrotum. Calves received antibiotics for BRD based on clinical severity scoring (CSS; 0: moribund, 4: moribund) and rectal temperature. Complete blood counts (CBC) were performed. Calves were categorized based on the number of treatments (NumTrt) received (0x, 1x, and 2x). Temporal variations in CBC and immune parameters were analyzed using mixed model repeated measure ANOVA (Proc GLIMMIX; SAS 9.4). Variation of CBCs and immune parameters based on TUS was determined using mixed model ANOVA. There was a NumTrt by day interaction effect on the responses of white blood cells (WBC) (P = 0.04) and haptoglobin (HPT) (P = 0.04). On day 21, WBC were greater in the 2x NumTrt group than other groups, but there were no differences in WBC between NumTrt levels on other days. Haptoglobin was greater in the 2x group on days 14 and 21 than 0x or 1x. Red blood cells (RBC) (P = 0.02) and WBC (P = 0.04) differed between FC and PC groups, and lower RBC and WBC were observed in the FC group. A castration status × day effect for mean corpuscular volume (MCV; P = 0.04) was observed where FC group had higher MCV at days 14 and 21 than the PC group. Tumor necrosis factor-α differed based on NumTrt (P = 0.03) and higher concentrations were found in 2x group. We observed a day effect for IL-1ß (P = 0.009) and TNF-α (P = 0.001). Significant effect of TUS on HPT at day 14 (P = 0.0004) and day 21 (P = 0.002) was observed. Combining HPT and platelet explained 15% of the variability in treatment status on a given day, whereas HPT and hemoglobin explained 10% of the variability in lung consolidation status. Although hematological and immunological parameters varied largely in our study, the potential of combining HPT with hematological variables should be studied further. Results from this study would help in understanding temporal changes in CBC and immune parameters in newly received stocker cattle.


Blood and immune parameters are altered during bovine respiratory disease (BRD) progression and can be used for predicting disease status. We aimed looking at the dynamics of hematology and immunology in newly received stocker cattle in naturally occurring BRD. Forty newly received stocker cattle were managed by a local producer and monitored for BRD occurrence for 21 d after receiving during the high-risk period. Newly weaned calves were monitored as they experience several stress factors and become prone to BRD. Additionally, there are limited data related to immunological changes that occur in high-risk stocker cattle. Since there is no perfect diagnostic test for BRD, the diagnosis of BRD is likely missed when only visual signs are used. We observed that haptoglobin (HPT) was the most important parameter to differentiate BRD severity. The combination of HPT with blood parameters (hemoglobin and platelets) was useful to predict treatment and lung infection status. Therefore, measuring hematological and immunological parameters might be helpful to determine BRD status and facilitate treatment decisions in newly received stocker cattle.


Assuntos
Complexo Respiratório Bovino , Doenças dos Bovinos , Doenças Respiratórias , Animais , Complexo Respiratório Bovino/tratamento farmacológico , Bovinos , Fazendas , Haptoglobinas , Masculino , Doenças Respiratórias/veterinária , Desmame
2.
Animals (Basel) ; 11(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430135

RESUMO

Mastitis is the most prevalent and economically important disease caused by different etiological agents, which leads to increased somatic cell count (SCC) and low milk quality. Treating mastitis cases with antimicrobials is essential to reduce SCC and improve milk quality. Non-prudent use of antimicrobials in dairy farms increased the development of antimicrobial resistant bacteria. This study's objectives were (1) to isolate and identify etiological agents of mastitis and (2) to determine antimicrobial resistance profiles of bacterial isolates. A total of 174 quarter milk samples from 151 cows with high SCC and clinical mastitis from 34 dairy farms in Tennessee, Kentucky, and Mississippi were collected. Bacterial causative agents were determined by bacteriological and biochemical tests. The antimicrobial resistance of bacterial isolates against 10 commonly used antimicrobials was tested. A total of 193 bacteria consisting of six bacterial species, which include Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Escherichia coli, Klebsiella oxytoca and Klebsiella pneumoniae were isolated. Staphylococcus aureus was the predominant isolate followed by Strep. spp., E. coli, and Klebsiella spp. Results of this study showed that Gram-negatives (E. coli and Klebsiella spp.) were more resistant than Gram-positives (Staph. aureus and Streptococcus spp.). Continuous antimicrobial resistance testing and identification of reservoirs of resistance traits in dairy farms are essential to implement proper mitigation measures.

3.
Animals (Basel) ; 10(5)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344845

RESUMO

Mastitis is inflammation of mammary glands usually caused by bacteria such as Staphylococcus aureus. Dairy cows are susceptible to mastitis during early dry and transition periods. Effective vaccine is needed during these periods. One of the limitations to develop an effective vaccine against S. aureus is the absence of good infection model. Intramammary infusion (IMIF) with S. aureus has been used as an infection model to test vaccine efficacy. IMIF is reliable in causing mastitis, but it bypasses physical barriers, non-specific natural defenses, and immunity in the teat canal. IMIF also transfers a large number of bacteria into the intramammary area at once. The objective of this study was to develop S. aureus IMIF model that mimics natural infection. Eight Holstein dairy cows were randomly divided into two groups of experimental (n = 5) and control (n = 3) cows. All teats of experimental cows were dipped in S. aureus culture suspension, whereas that of control cows were dipped in phosphate-buffered saline. Results showed that four of five cows were infected with challenge strain by day 3 of the challenge. The remaining cow was infected with Staphylococcus chromogenes. In conclusion, an experimental S. aureus intramammary infection can be induced by teat dipping into bacterial suspension.

4.
PLoS One ; 14(8): e0212823, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31461439

RESUMO

The objective was to determine the effects of sleep or lying deprivation on the behavior of dairy cows. Data were collected from 8 multi- and 4 primiparous cows (DIM = 199 ± 44 (mean ± SD); days pregnant = 77 ± 30). Using a crossover design, each cow experienced: 1) sleep deprivation implemented by noise or physical contact when their posture suggested sleep, and 2) lying deprivation imposed by a grid placed on the pen floor. One day before treatment (baseline), and treatment day (treatment) were followed by a 12-d washout period (with the first 7 d used to evaluate recovery). Study days were organized from 2100 to 2059. During habituation (d -3 and -2 before treatment), baseline (d -1), and trt (d 0), housing was individual boxstalls (mattress with no bedding). After treatment, cows returned to sand-bedded freestalls for a 7-d recovery period (d 1 to 7) where data on lying behaviors were collected. Following the recovery period, an additional 5-d period was provided to allow the cows a 12-d period between exposures to treatments. Daily lying time, number lying bouts, bout duration, and number of steps were recorded by dataloggers attached to the hind leg of cows throughout the study period. Data were analyzed using a mixed model including fixed effects of treatment (sleep deprivation vs. sleep and lying deprivation), day, and their interaction with significant main effects separated using a PDIFF statement (P ≤ 0.05). Interactions between treatment and day were detected for daily lying time and the number of bouts. Lying time was lower for both treatments during the treatment period compared to baseline. Lying time increased during the recovery period for both lying and sleep deprived cows. However, it took 4 d for the lying deprived cows to fully recover their lying time after treatment, whereas it took the sleep deprived cows 2 d for their lying time to return to baseline levels. Results suggest that both sleep and lying deprivation can have impact cow behavior. Management factors that limit freestall access likely reduce lying time and sleep, causing negative welfare implications for dairy cows.


Assuntos
Indústria de Laticínios , Lactação , Postura , Privação do Sono/fisiopatologia , Animais , Bovinos , Eletroencefalografia , Feminino , Leite/metabolismo , Gravidez , Privação do Sono/metabolismo
5.
Immunogenetics ; 70(9): 553-562, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29862454

RESUMO

Mastitis is a detrimental disease in the dairy industry that decreases milk quality and costs upwards of $2 billion annually. Often, mastitis results from bacteria entering the gland through the teat opening. Streptococcus uberis is responsible for a high percentage of subclinical and clinical mastitis. Following an intramammary experimental challenge with S. uberis on Holstein cows (n = 40), milk samples were collected and somatic cell counts (SCC) were determined by the Dairy Herd Improvement Association Laboratory. Traditional genome-wide association studies (GWAS) have utilized test day SCC or SCC lactation averages to identify loci of interest. Our approach utilizes SCC collected following a S. uberis experimental challenge to generate three novel phenotypes: (1) area under the curve (AUC) of SCC for 0-7 days and (2) 0-28 days post-challenge; and (3) when SCC returned to below 200,000 cells/mL post-challenge (< 21 days, 21-28 days, or > 28 days). Polymorphisms were identified using Illumina's BovineSNP50 v2 DNA BeadChip. Associations were tested using Plink software and identified 16 significant (p < 1.0 × 10-4) single-nucleotide polymorphisms (SNPs) across the phenotypes. Most significant SNPs were in genes linked to cell signaling, migration, and apoptosis. Several have been recognized in relation to infectious processes (ATF7, SGK1, and PACRG), but others less so (TRIO, GLRA1, CELSR2, TIAM2, CPE). Further investigation of these genes and their roles in inflammation (e.g., SCC) can provide potential targets that influence resolution of mammary gland infection. Likewise, further investigation of the identified SNP with mastitis and other disease phenotypes can provide greater insight to the potential of these SNP as genetic markers.


Assuntos
Leucócitos/fisiologia , Mastite Bovina/genética , Mastite Bovina/microbiologia , Polimorfismo de Nucleotídeo Único , Infecções Estreptocócicas/veterinária , Animais , Bovinos , Feminino , Estudo de Associação Genômica Ampla , Leite/citologia , Fenótipo , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/microbiologia , Streptococcus/patogenicidade
6.
Vet Immunol Immunopathol ; 190: 45-52, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28778322

RESUMO

Mastitis, an inflammation of the mammary gland, costs the dairy industry billions of dollars in lost revenues annually. The prevalence and costs associated with mastitis has made genetic selection methods a target for research. Previous research has identified amino acid changes at positions 122, 207, 245, 327, and 332 in the IL8 receptor, CXCR1, that result in three dominant amino acid haplotypes: VWHKH, VWHRR, and AWQRR. We hypothesize different haplotype combinations influence a cow's resistance, strength, and duration of response to mastitis. To test this, Holstein dairy cows (n=40) were intramammarily challenged with Streptococcus uberis within 3 d post-calving. All cows developed mastitis based on isolation of S. uberis from the challenged quarter at least twice. All cows with the VWHRR x VWHRR (n=5) and AWQRR x VWHRR (n=6) haplotype combinations required antibiotic therapy due to clinical signs of mastitis and tended (P=0.08) to be different from cows with a VWHRR x VWHKH (n=6) haplotype combination where only 33.3% required antibiotic therapy. Cows with a VWHRR homozygous haplotype combination displayed significantly higher responses to challenge indicated by elevated S. uberis counts (4340±5,521.9CFU/mL; P=0.01), mammary scores (1.1±0.18; P=0.03), milk scores (0.9±0.17; P=0.002), and SCC (1,010,832±489,993cells/mL; P=0.03). Contrastingly, AWQRR x VWHRR cows had significantly lower S. uberis counts (15.3±16.46CFU/mL; P=0.01), mammary scores (0.3±0.16; P=0.03), milk scores (0±0.15; P=0.002), and SCC (239,261±92,264.3cells/mL; P=0.03). Cows of the VWHKH x VWHRR haplotype combination displayed responses to challenge statistically comparable to other haplotype combinations, but appeared to have an earlier peak in SCC in comparison to all other haplotype combinations. Haplotype combination did not influence milk yield (P=0.6). Our results suggest using combinations of the SNPs within the CXCR1 gene gives a better indication of a cow's ability to combat S. uberis mastitis and could resolve prior studies' conflicting results focusing on individual SNP.


Assuntos
Mastite Bovina/genética , Receptores de Interleucina-8A/genética , Infecções Estreptocócicas/veterinária , Animais , Bovinos/genética , Bovinos/imunologia , Feminino , Haplótipos/genética , Mastite Bovina/imunologia , Mastite Bovina/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Receptores de Interleucina-8A/fisiologia , Índice de Gravidade de Doença , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus/imunologia
7.
Vet Res ; 46: 133, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26582308

RESUMO

In the present study, the effect of anti-recombinant Streptococcus uberis adhesion molecule (SUAM) antibodies against S. uberis intramammary infections (IMI) was evaluated using a passive protection model. Mammary quarters of healthy cows were infused with S. uberis UT888 opsonized with affinity purified anti-rSUAM antibodies or hyperimmune sera. Non-opsonized S. uberis UT888 were used as a control. Mammary quarters infused with opsonized S. uberis showed mild-to undetectable clinical symptoms of mastitis, lower milk bacterial counts, and less infected mammary quarters as compared to mammary quarters infused with non-opsonized S. uberis. These findings suggest that anti-rSUAM antibodies interfered with infection of mammary gland by S. uberis which might be through preventing adherence to and internalization into mammary gland cells, thus facilitating clearance of S. uberis, reducing colonization, and causing less IMI.


Assuntos
Anticorpos Antibacterianos/sangue , Glândulas Mamárias Animais/imunologia , Mastite Bovina/microbiologia , Mastite Bovina/terapia , Vacinas Estreptocócicas/uso terapêutico , Streptococcus/imunologia , Animais , Anticorpos Antibacterianos/metabolismo , Antígenos de Bactérias/imunologia , Bovinos , Feminino , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/imunologia , Vacinas Sintéticas/uso terapêutico
8.
Vet Immunol Immunopathol ; 145(1-2): 464-70, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22056270

RESUMO

Several single nucleotide polymorphisms (SNP) in the bovine CXCR1 gene have been implicated in resistance to mastitis and milk somatic cell counts in several sample populations of Holstein dairy cows. As such, a more thorough understanding of SNP present in and near the bovine CXCR1 gene is needed. This study identified 36 SNP in the coding region and surrounding sequences of CXCR1 in 88 Holstein dairy cows. Four SNP induced amino acid changes and 1 SNP an early stop codon. Two amino acid changes occur in the third intracellular loop and C-terminus in locations tied to intracellular signaling. The 36 SNP could be subdivided into 4 separate linkage groups. Using representative or 'tag' SNP from each linkage group, haplotypes or the combination of SNP found on a single allele were generated to increase the specificity of an animal's genetic background. Four haplotypes were identified that represented 99% of the sample population. The haplotypes generated using tag SNP agreed with haplotypes generated from SNP causing amino acid changes. In conclusion, the CXCR1 gene is highly polymorphic and has potential implications towards genetic selection and understanding host factors that increase the risk of infection.


Assuntos
Polimorfismo de Nucleotídeo Único/genética , Receptores de Interleucina-8A/genética , Alelos , Sequência de Aminoácidos , Animais , Bovinos/genética , Bovinos/imunologia , Ligação Genética/genética , Haplótipos/genética , Dados de Sequência Molecular , Alinhamento de Sequência/veterinária
9.
J Mammary Gland Biol Neoplasia ; 16(4): 421-32, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21997401

RESUMO

One of the most frequent mammary diseases impacting lactating animals is mastitis, an inflammation of the mammary gland most commonly caused by bacterial infection. The severity of mastitis is greatly influenced by the invading organism and the subsequent immune response which must recognize the foreign organism, recruit immune cells, eliminate the invading pathogen, and resolve the inflammatory response. The speed, strength, and duration of this response and subsequent disease susceptibility are critically tied to the genetic background of an animal. However, the genetic contribution has been difficult to identify due to the complex interactions that must occur for effective disease resistance. Recent studies have utilized polymorphisms to better define the genes and chromosomal regions that contribute to mastitis resistance. This review will examine these studies with primary emphasis in bovine systems, as the most work regarding mastitis has been conducted in this species.


Assuntos
Infecções Bacterianas/genética , Resistência à Doença/genética , Genes/genética , Marcadores Genéticos/genética , Mastite Bovina/genética , Polimorfismo Genético/genética , Transdução de Sinais , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/veterinária , Bovinos , Feminino , Mastite Bovina/imunologia , Mastite Bovina/microbiologia
10.
Vet Immunol Immunopathol ; 114(3-4): 335-40, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16982101

RESUMO

Interleukin (IL)-8 and its receptors, CXCR1 and CXCR2, are key regulators of inflammation. However, knowledge of these receptors at the genomic level is limiting or absent in cattle. Therefore, our objective was to identify bovine orthologs of human CXCR1 and CXCR2. Alignment of bovine CXCR2 reference mRNA to the bovine genome revealed two regions of similarity on BTA2 approximately 20 kb apart and on opposite strands. Comparison with the human genome suggested the more centromeric region to be CXCR2 and the more telomeric region to be CXCR1 which contradicts the current annotation of the bovine CXCR2 reference mRNA. This observation was verified by sequencing RT-PCR products of specific regions within each predicted IL-8 receptor and comparing with human sequences using ClustalW. Further examination of coding and non-coding regions within the IL-8 receptor genome complex revealed that both bovine and canine CXCR1 and CXCR2 genes had more conserved sequences in common with the human genes than either mouse or rat, and may offer more suitable animal models for certain applications. This molecular information provides a stepping stone for greater understanding of the role each IL-8 receptor plays in inflammation and will enhance our ability to develop strategies against inflammatory based diseases.


Assuntos
Bovinos/genética , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8B/genética , Animais , Sequência de Bases , Bovinos/imunologia , Sequência Conservada , Humanos , Dados de Sequência Molecular , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Interleucina-8A/biossíntese , Receptores de Interleucina-8A/imunologia , Receptores de Interleucina-8B/biossíntese , Receptores de Interleucina-8B/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...