Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 10: 1287542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126073

RESUMO

In the pharmaceutical sector, evergreening is considered a range of practices applied to extend monopoly protection on existing products. Filing several patent applications related to the same active pharmaceutical ingredient (API) is one of the most common manifestations of evergreening. During the COVID-19 pandemic, several health technologies were developed. This study aimed to analyze the extension of evergreening for selected health technologies for SARS-CoV-2 through patent filing strategies. Starting with the selection of three antivirals, one biological and two vaccines, a patent landscape was built based on public and private databases. Regarding these selected technologies, we analyzed some of the evergreening strategies used by different applicants, academic institutions or pharmaceutical companies and found a total of 29 applications (10 after the pandemic) for antivirals, 3 applications for a biological drug (1 after the pandemic), and 41 applications for vaccines (23 after the pandemic). Despite differences among the technologies, a common aspect found in all analyzed cases is the intense patent filing after the pandemic, aligned to the fact that those technologies were moving through the R&D process up to regulatory approval. The evergreening approach pursued has already been found in other diseases, with the risk of monopoly extension and also bringing legal uncertainty due to the lack of transparency of newer patent applications covering specific medical indications. Therefore, efforts to address evergreening should be pursued by countries, including the adoption of a public health approach to the patent examination of those technologies to prevent the granting of undeserved patents.

2.
Biochem J ; 480(19): 1533-1551, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37721041

RESUMO

In this paper, we describe the development of a Dictyostelium discoideum strain deficient in frataxin protein (FXN). We investigated the conservation of function between humans and D. discoideum and showed that DdFXN can substitute the human version in the interaction and activation of the Fe-S assembly supercomplex. We edited the D. discoideum fxn locus and isolated a defective mutant, clone 8, which presents landmarks of frataxin deficiency, such as a decrease in Fe-S cluster-dependent enzymatic functions, growth rate reduction, and increased sensitivity to oxidative stress. In addition, the multicellular development is affected as well as growing on bacterial lawn. We also assessed the rescuing capacity of DdFXN-G122V, a version that mimics a human variant present in some FA patients. While the expression of DdFXN-G122V rescues growth and enzymatic activity defects, as DdFXN does, multicellular development defects were only partially rescued. The results of the study suggest that this new D. discoideum strain offers a wide range of possibilities to easily explore diverse FA FXN variants. This can facilitate the development of straightforward drug screenings to look for new therapeutic strategies.

3.
ACS Chem Biol ; 18(7): 1534-1547, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37410592

RESUMO

The mitochondrial cysteine desulfurase NFS1 is an essential PLP-dependent enzyme involved in iron-sulfur cluster assembly. The enzyme catalyzes the desulfurization of the l-Cys substrate, producing a persulfide and l-Ala as products. In this study, we set the measurement of the product l-Ala by NMR in vitro by means of 1H NMR spectra acquisition. This methodology provided us with the possibility of monitoring the reaction in both fixed-time and real-time experiments, with high sensitivity and accuracy. By studying I452A, W454A, Q456A, and H457A NFS1 variants, we found that the C-terminal stretch (CTS) of the enzyme is critical for function. Specifically, mutation of the extremely conserved position W454 resulted in highly decreased activity. Additionally, we worked on two singular variants: "GGG" and C158A. In the former, the catalytic Cys-loop was altered by including two Gly residues to increase the flexibility of this loop. This variant had significantly impaired activity, indicating that the Cys-loop motions are fine-tuned in the wild-type enzyme. In turn, for C158A, we found an unanticipated increase in l-Cys desulfurase activity. Furthermore, we carried out molecular dynamics simulations of the supercomplex dedicated to iron-sulfur cluster biosynthesis, which includes NFS1, ACP, ISD11, ISCU2, and FXN subunits. We identified CTS as a key element that established interactions with ISCU2 and FXN concurrently; we found specific interactions that are established when FXN is present, reinforcing the idea that FXN not only forms part of the iron-sulfur cluster assembly site but also modulates the internal motions of ISCU2.


Assuntos
Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Enxofre/química , Ferro/química , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética
4.
Biotechnol Bioeng ; 120(2): 409-425, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36225115

RESUMO

Frataxin is a kinetic activator of the mitochondrial supercomplex for iron-sulfur cluster assembly. Low frataxin expression or a decrease in its functionality results in Friedreich's Ataxia (FRDA). With the aim of creating new molecular tools to study this metabolic pathway, and ultimately, to explore new therapeutic strategies, we have investigated the possibility of obtaining small proteins exhibiting a high affinity for frataxin. In this study, we applied the ribosome display approach, using human frataxin as the target. We focused on Affi_224, one of the proteins that we were able to select after five rounds of selection. We have studied the interaction between both proteins and discussed some applications of this specific molecular tutor, concerning the modulation of the supercomplex activity. Affi_224 and frataxin showed a KD value in the nanomolar range, as judged by surface plasmon resonance analysis. Most likely, it binds to the frataxin acidic ridge, as suggested by the analysis of chemical shift perturbations (nuclear magnetic resonance) and computational simulations. Affi_224 was able to increase Cys NFS1 desulfurase activation exerted by the FRDA frataxin variant G130V. Importantly, Affi_224 interacts with frataxin in a human cellular model. Our results suggest quaternary addition may be a new tool to modulate frataxin function in vivo. Nevertheless, more functional experiments under physiological conditions should be carried out to evaluate Affi_224 effectiveness in FRDA cell models.


Assuntos
Liases de Carbono-Enxofre , Proteínas de Ligação ao Ferro , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Frataxina
6.
Arch Biochem Biophys ; 715: 109086, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801473

RESUMO

In humans, the loss of frataxin results in Friedreich's Ataxia, a neurodegenerative disease, in which a deficit in the iron-sulfur cluster assembly is observed. In this work, we analyzed three frataxin variants in which one tryptophan was replaced by a glycine: W155G, W168G and W173G. As expected, given its localization in the assembly site, W155G was not able to activate the desulfurase activity of the supercomplex for iron-sulfur cluster assembly. In turn, W168G, which was significantly more unstable than W155G, was fully active. W173G, which was highly unstable as W168G, showed a significantly decreased activity, only slightly higher than W155G. As W168G and W173G were highly sensitive to proteolysis, we investigated the protein motions by molecular dynamic simulations. We observed that W173G may display altered motions at the Trp155 site. Furthermore, we revealed a H-bond network in which Trp155 takes part, involving residues Gln148, Asn151, Gln153 and Arg165. We suggest that this motion modulation that specifically alters the population of different Trp155 rotamers can be directly transferred to the assembly site, altering the dynamics of the ISCU His137 key residue. This hypothesis was also contrasted by means of molecular dynamic simulations of frataxin in the context of the complete supercomplex. We propose that the supercomplex requires very definite motions of Trp155 to consolidate the assembly site.


Assuntos
Proteínas de Ligação ao Ferro/química , Triptofano/química , Humanos , Proteínas de Ligação ao Ferro/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Estabilidade Proteica , Frataxina
7.
Molecules ; 25(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096797

RESUMO

The self-assembly of proteins is an essential process for a variety of cellular functions including cell respiration, mobility and division. On the other hand, protein or peptide misfolding and aggregation is related to the development of Parkinson's disease and Alzheimer's disease, among other aggregopathies. As a consequence, significant research efforts are directed towards the understanding of this process. In this review, we are focused on the use of UV-Visible Absorption Spectroscopy, Fluorescence Spectroscopy and Circular Dichroism to evaluate the self-organization of proteins and peptides in solution. These spectroscopic techniques are commonly available in most chemistry and biochemistry research laboratories, and together they are a powerful approach for initial as well as routine evaluation of protein and peptide self-assembly and aggregation under different environmental stimulus. Furthermore, these spectroscopic techniques are even suitable for studying complex systems like those in the food industry or pharmaceutical formulations, providing an overall idea of the folding, self-assembly, and aggregation processes, which is challenging to obtain with high-resolution methods. Here, we compiled and discussed selected examples, together with our results and those that helped us better to understand the process of protein and peptide aggregation. We put particular emphasis on the basic description of the methods as well as on the experimental considerations needed to obtain meaningful information, to help those who are just getting into this exciting area of research. Moreover, this review is particularly useful to those out of the field who would like to improve reproducibility in their cellular and biomedical experiments, especially while working with peptide and protein systems as an external stimulus. Our final aim is to show the power of these low-resolution techniques to improve our understanding of the self-assembly of peptides and proteins and translate this fundamental knowledge in biomedical research or food applications.


Assuntos
Peptídeos/química , Proteínas/química , Dicroísmo Circular , Peptídeos/síntese química , Agregados Proteicos , Proteínas/síntese química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
8.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957566

RESUMO

Several biological activities depend on iron-sulfur clusters ([Fe-S]). Even though they are well-known in several organisms their function and metabolic pathway were poorly understood in the majority of the organisms. We propose to use the amoeba Dictyostelium discoideum, as a biological model to study the biosynthesis of [Fe-S] at the molecular, cellular and organism levels. First, we have explored the D. discoideum genome looking for genes corresponding to the subunits that constitute the molecular machinery for Fe-S cluster assembly and, based on the structure of the mammalian supercomplex and amino acid conservation profiles, we inferred the full functionality of the amoeba machinery. After that, we expressed the recombinant mature form of D. discoideum frataxin protein (DdFXN), the kinetic activator of this pathway. We characterized the protein and its conformational stability. DdFXN is monomeric and compact. The analysis of the secondary structure content, calculated using the far-UV CD spectra, was compatible with the data expected for the FXN fold, and near-UV CD spectra were compatible with the data corresponding to a folded protein. In addition, Tryptophan fluorescence indicated that the emission occurs from an apolar environment. However, the conformation of DdFXN is significantly less stable than that of the human FXN, (4.0 vs. 9.0 kcal mol-1, respectively). Based on a sequence analysis and structural models of DdFXN, we investigated key residues involved in the interaction of DdFXN with the supercomplex and the effect of point mutations on the energetics of the DdFXN tertiary structure. More than 10 residues involved in Friedreich's Ataxia are conserved between the human and DdFXN forms, and a good correlation between mutational effect on the energetics of both proteins were found, suggesting the existence of similar sequence/function/stability relationships. Finally, we integrated this information in an evolutionary context which highlights particular variation patterns between amoeba and humans that may reflect a functional importance of specific protein positions. Moreover, the complete pathway obtained forms a piece of evidence in favor of the hypothesis of a shared and highly conserved [Fe-S] assembly machinery between Human and D. discoideum.


Assuntos
Dictyostelium/metabolismo , Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Sequência de Aminoácidos/genética , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Biologia Computacional , Cristalografia , Dictyostelium/genética , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Cinética , Simulação de Dinâmica Molecular , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes , Alinhamento de Sequência , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Frataxina
9.
Subcell Biochem ; 93: 393-438, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31939159

RESUMO

Mammalian frataxin is a small mitochondrial protein involved in iron sulfur cluster assembly. Frataxin deficiency causes the neurodegenerative disease Friedreich's Ataxia. Valuable knowledge has been gained on the structural dynamics of frataxin, metal-ion-protein interactions, as well as on the effect of mutations on protein conformation, stability and internal motions. Additionally, laborious studies concerning the enzymatic reactions involved have allowed for understanding the capability of frataxin to modulate Fe-S cluster assembly function. Remarkably, frataxin biological function depends on its interaction with some proteins to form a supercomplex, among them NFS1 desulfurase and ISCU, the scaffolding protein. By combining multiple experimental tools including high resolution techniques like NMR and X-ray, but also SAXS, crosslinking and mass-spectrometry, it was possible to build a reliable model of the structure of the desulfurase supercomplex NFS1/ACP-ISD11/ISCU/frataxin. In this chapter, we explore these issues showing how the scientific view concerning frataxin structure-function relationships has evolved over the last years.


Assuntos
Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/genética , Humanos , Proteínas de Ligação ao Ferro/genética , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Difração de Raios X , Frataxina
10.
ACS Chem Biol ; 13(6): 1455-1462, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29737835

RESUMO

Iron-sulfur clusters are essential cofactors in many biochemical processes. ISD11, one of the subunits of the protein complex that carries out the cluster assembly in mitochondria, is necessary for cysteine desulfurase NFS1 stability and function. Several authors have recently provided evidence showing that ISD11 interacts with the acyl carrier protein (ACP). We carried out the coexpression of human mitochondrial ACP and ISD11 in E. coli. This work shows that ACP and ISD11 form a soluble, structured, and stable complex able to bind to the human NFS1 subunit modulating its activity. Results suggest that ACP plays a key-role in ISD11 folding and stability in vitro. These findings offer the opportunity to study the mechanism of interaction between ISD11 and NFS1.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Liases de Carbono-Enxofre/metabolismo , Humanos , Mitocôndrias/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica
11.
J Biol Chem ; 290(10): 6179-90, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25605721

RESUMO

The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca(2+) pump (PMCA). We found that Ca(2+)-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca(2+)-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA.


Assuntos
Membrana Celular/enzimologia , Bicamadas Lipídicas/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Conformação Proteica , Cristalografia por Raios X , Detergentes/química , Detergentes/metabolismo , Eritrócitos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Micelas , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...