Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 127(6): 787-798, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33506241

RESUMO

BACKGROUND AND AIMS: Mammals and molluscs (MaM) are abundant herbivores of tree seeds and seedlings, but how the trees and their environment affect MaM herbivory has been little studied. MaM tend to move much larger distances during the feeding stage than the more frequently studied insect herbivores. We hypothesize that MaM (1) select and stay within the patches that promise to be relatively the richest in seeds and seedlings, i.e. patches around adult trees that are old and within a distantly related, less productive neighborhood; and (2) try to remain sheltered from predators while foraging, i.e. mammals remain close to adult trees or to cover by herbs while foraging, and might force their mollusc prey to show the opposite distribution. METHODS: We exposed oak acorns and seedlings in a temperate forest along transects from adult conspecifics in different neighbourhoods. We followed acorn removal and leaf herbivory. We used exclusion experiments to separate acorn removal by ungulates vs. rodents and leaf herbivory by insects vs. molluscs. We measured the size of the closest conspecific adult tree, its phylogenetic isolation from the neighbourhood and the herbaceous ground cover. KEY RESULTS: Consistent with our hypothesis, rodents removed seeds around adult trees surrounded by phylogenetically distant trees and by a dense herb cover. Molluscs grazed seedlings surrounding large conspecific adults and where herb cover is scarce. Contrary to our hypothesis, the impact of MaM did not change from 1 to 5 m distance from adult trees. CONCLUSIONS: We suggest that foraging decisions of MaM repulse seedlings from old adults, and mediate the negative effects of herbaceous vegetation on tree recruitment. Also, an increase in mammalian seed predation might prevent trees from establishing in the niches of phylogenetically distantly related species, contrary to what is known from insect enemies.


Assuntos
Quercus , Plântula , Animais , Mamíferos , Moluscos , Filogenia , Sementes
2.
Ecol Lett ; 22(8): 1285-1296, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31172652

RESUMO

Why can hosts coexist with conspecifics or phylogenetically proximate neighbours despite sharing specialist enemies? Do the hosts evolve increased enemy resistance? If so, does this have costs in terms of climatic-stress resistance, or in such neighbourhoods, does climatic-stress select for resistances that are multifunctional against climate and enemies? We studied oak (Quercus petraea) descendants from provenances of contrasting phylogenetic neighbourhoods and climates in a 25-year-old common garden. We found that descendants from conspecific or phylogenetically proximate neighbourhoods had the toughest leaves and fewest leaf miners, but no reduction in climatic-stress resistance. Descendants from such neighbourhoods under cold or dry climates had the highest flavonol and anthocyanin levels and the thickest leaves. Overall, populations facing phylogenetically proximate neighbours can rapidly evolve herbivore resistance, without cost to climatic-stress resistance, but possibly facilitating resistance against cold and drought via multifunctional traits. Microevolution might hence facilitate ecological coexistence of close relatives and thereby macroevolutionary conservatism of niches.


Assuntos
Secas , Herbivoria , Quercus , Clima , Filogenia , Folhas de Planta
3.
New Phytol ; 213(1): 66-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27880007

RESUMO

Contents 66 I. 67 II. 68 III. 69 IV. 70 V. 73 VI. 75 VII. 77 78 References 78 SUMMARY: Recent decades have seen declines of entire plant clades while other clades persist despite changing environments. We suggest that one reason why some clades persist is that species within these clades use similar habitats, because such similarity may increase the degree of co-occurrence of species within clades. Traditionally, co-occurrence among clade members has been suggested to be disadvantageous because of increased competition and enemy pressure. Here, we hypothesize that increased co-occurrence among clade members promotes mutualist exchange, niche expansion or hybridization, thereby helping species avoid population decline from environmental change. We review the literature and analyse published data for hundreds of plant clades (genera) within a well-studied region and find major differences in the degree to which species within clades occupy similar habitats. We tentatively show that, in clades for which species occupy similar habitats, species tend to exhibit increased co-occurrence, mutualism, niche expansion, and hybridization - and rarely decline. Consistently, throughout the geological past, clades whose species occupied similar habitats often persisted through long time-spans. Overall, for many plant species, the occupation of similar habitats among fellow clade members apparently reduced their vulnerability to environmental change. Future research should identify when and how this previously unrecognized eco-evolutionary feedback operates.


Assuntos
Ecossistema , Retroalimentação , Filogenia , Simbiose/fisiologia , Modelos Teóricos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...