Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14087, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640720

RESUMO

We evaluate the efficacy of antimicrobial Photodynamic Therapy (APDT) for inactivating a variety of antibiotic-resistant clinical strains from diabetic foot ulcers. Here we are focused on APDT based on organic light-emitting diodes (OLED). The wound swabs from ten patients diagnosed with diabetic foot ulcers were collected and 32 clinical strains comprising 22 bacterial species were obtained. The isolated strains were identified with the use of mass spectrometry coupled with a protein profile database and tested for antibiotic susceptibility. 74% of isolated bacterial strains exhibited adaptive antibiotic resistance to at least one antibiotic. All strains were subjected to the APDT procedure using an OLED as a light source and 16 µM methylene blue as a photosensitizer. APDT using the OLED led to a large reduction in all cases. For pathogenic bacteria, the reduction ranged from 1.1-log to > 8 log (Klebsiella aerogenes, Enterobacter cloaca, Staphylococcus hominis) even for high antibiotic resistance (MRSA 5-log reduction). Opportunistic bacteria showed a range from 0.4-log reduction for Citrobacter koseri to > 8 log reduction for Kocuria rhizophila. These results show that OLED-driven APDT is effective against pathogens and opportunistic bacteria regardless of drug resistance.


Assuntos
Anti-Infecciosos , Diabetes Mellitus , Pé Diabético , Fotoquimioterapia , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pé Diabético/tratamento farmacológico , Enterobacter
2.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982505

RESUMO

Amyloid ß peptides (Aß) aggregating in the brain have a potential neurotoxic effect and are believed to be a major cause of Alzheimer's disease (AD) development. Thus, inhibiting amyloid polypeptide aggregation seems to be a promising approach to the therapy and prevention of this neurodegenerative disease. The research presented here is directed at the determination of the inhibitory activity of ovocystatin, the cysteine protease inhibitor isolated from egg white, on Aß42 fibril genesis in vitro. Thioflavin-T (ThT) assays, which determine the degree of aggregation of amyloid peptides based on fluorescence measurement, circular dichroism spectroscopy (CD), and transmission electron microscopy (TEM) have been used to assess the inhibition of amyloid fibril formation by ovocystatin. Amyloid beta 42 oligomer toxicity was measured using the MTT test. The results have shown that ovocystatin possesses Aß42 anti-aggregation activity and inhibits Aß42 oligomer toxicity in PC12 cells. The results of this work may help in the development of potential substances able to prevent or delay the process of beta-amyloid aggregation-one of the main reasons for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Ratos , Animais , Humanos , Peptídeos beta-Amiloides/química , Doença de Alzheimer/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Amiloide/química
3.
Chem Soc Rev ; 52(5): 1697-1722, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36779328

RESUMO

Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Espécies Reativas de Oxigênio , Fotoquimioterapia/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias
4.
ACS Appl Mater Interfaces ; 14(35): 40200-40213, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36017993

RESUMO

The need for efficient probing, sensing, and control of the bioactivity of biomolecules (e.g., albumins) has led to the engineering of new fluorescent albumins' markers fulfilling very specific chemical, physical, and biological requirements. Here, we explore acetone-derived polymer dots (PDs) as promising candidates for albumin probes, with special attention paid to their cytocompatibility, two-photon absorption properties, and strong ability to non-destructively interact with serum albumins. The PDs show no cytotoxicity and exhibit high photostability. Their pronounced green fluorescence is observed upon both one-photon excitation (OPE) and two-photon excitation (TPE). Our studies show that both OPE and TPE emission responses of PDs are proteinaceous environment-sensitive. The proteins appear to constitute a matrix for the dispersion of fluorescent PDs, limiting both their aggregation and interactions with the aqueous environment. It results in a large enhancement of PD fluorescence. Meanwhile, the PDs do not interfere with the secondary protein structures of albumins, nor do they induce their aggregation, enabling the PD candidates to be good nanomarkers for non-destructive probing and sensing of albumins.


Assuntos
Fótons , Polímeros , Albuminas , Fluorescência , Corantes Fluorescentes/química
5.
Ultramicroscopy ; 230: 113388, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509894

RESUMO

Antibacterial photodynamic therapy is a promising treatment for problematic infections caused by bacteria and fungi. Despite its undoubted effectiveness, the ultrastructural mechanism of microbial death remains not fully described and distinct organisms respond to the treatment with different efficacy. For this reason, it was decided to try imaging the process using the in situ transmission electron microscopy method. To conduct an observational experiment, the microscope was significantly modified. Liquid cell methods were used, electron doses and their influence on the sample were estimated, and a fiber-optic sample illuminator was designed and built. The modifications allowed for the light-induced characterization of photosensitizer-bacteria interaction. Microscope modification is a promising platform for further studies of light-induced phenomena in both life and material science.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Antibacterianos/farmacologia , Microscopia Eletrônica de Transmissão , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia
6.
Photodiagnosis Photodyn Ther ; 35: 102463, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34325078

RESUMO

The novel approach for imaging of antimicrobial photodynamic therapy processes presented in this work is based on transmission electron microscopy methods. With the use of liquid cell, illumination system, and lowered electron dose the successful light-induced in-situ observations on Staphylococcus aureus encapsulated with methylene blue were performed. Results showed that with specified imaging parameters it is possible to conduct reliable research on bacteria in electron microscope despite the unfavorable damaging effect of the highly energetic electron beam used for imaging. This approach differs from the common methods, as it provides direct observations of the processes occurring upon light illumination. The effects obtained with the proposed method are very promising and may serve to answer why different microorganisms respond to the therapy differently.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Microscopia Eletrônica de Transmissão , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
7.
Front Microbiol ; 11: 606185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281805

RESUMO

The need for alternative strategies to fight bacteria is evident from the emergence of antimicrobial resistance. To that respect, photodynamic antimicrobial chemotherapy steadily rises in bacterial eradication by using light, a photosensitizer and oxygen, which generates reactive oxygen species that may kill bacteria. Herein, we report the encapsulation of 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin into acetylated lignin water-dispersible nanoparticles (THPP@AcLi), with characterization of those systems by standard spectroscopic and microscopic techniques. We observed that THPP@AcLi retained porphyrin's photophysical/photochemical properties, including singlet oxygen generation and fluorescence. Besides, the nanoparticles demonstrated enhanced stability on storage and light bleaching. THPP@AcLi were evaluated as photosensitizers against two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, and against three Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecalis. THPP@AcLi were able to diminish Gram-positive bacterial survival to 0.1% when exposed to low white LED light doses (4.16 J/cm2), requiring concentrations below 5 µM. Nevertheless, the obtained nanoparticles were unable to diminish the survival of Gram-negative bacteria. Through transmission electron microscopy observations, we could demonstrate that nanoparticles did not penetrate inside the bacterial cell, exerting their destructive effect on the bacterial wall; also, a high affinity between acetylated lignin nanoparticles and bacteria was observed, leading to bacterial flocculation. Altogether, these findings allow to establish a photodynamic antimicrobial chemotherapy alternative that can be used effectively against Gram-positive topic infections using the widely available natural polymeric lignin as a drug carrier. Further research, aimed to inhibit the growth and survival of Gram-negative bacteria, is likely to enhance the wideness of acetylated lignin nanoparticle applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...