Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577050

RESUMO

The colored grain of wheat (Triticum aestivum L.) contains a large number of polyphenolic compounds that are biologically active ingredients. The purpose of this work was a comparative metabolomic study of extracts from anthocyaninless (control), blue, and deep purple (referred to here as black) grains of seven genetically related wheat lines developed for the grain anthocyanin pigmentation trait. To identify target analytes in ethanol extracts, high-performance liquid chromatography was used in combination with Bruker Daltonics ion trap mass spectrometry. The results showed the presence of 125 biologically active compounds of a phenolic (85) and nonphenolic (40) nature in the grains of T. aestivum (seven lines). Among them, a number of phenolic compounds affiliated with anthocyanins, coumarins, dihydrochalcones, flavan-3-ols, flavanone, flavones, flavonols, hydroxybenzoic acids, hydroxycinnamic acids, isoflavone, lignans, other phenolic acids, stilbenes, and nonphenolic compounds affiliated with alkaloids, carboxylic acids, carotenoids, diterpenoids, essential amino acids, triterpenoids, sterols, nonessential amino acids, phytohormones, purines, and thromboxane receptor antagonists were found in T. aestivum grains for the first time. A comparative analysis of the diversity of the compounds revealed that the lines do not differ from each other in the proportion of phenolic (53.3% to 70.3% of the total number of identified compounds) and nonphenolic compounds (46.7% to 29.7%), but diversity of the compounds was significantly lower in grains of the control line. Even though the lines are genetically closely related and possess similar chemical profiles, some line-specific individual compounds were identified that constitute unique chemical fingerprints and allow to distinguish each line from the six others. Finally, the influence of the genotype on the chemical profiles of the wheat grains is discussed.


Assuntos
Cromatografia Líquida , Espectrometria de Massas em Tandem , Terpenos , Triticum
2.
Biochem Res Int ; 2021: 9957490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306755

RESUMO

The plant Rhodiola rosea L. of family Crassulaceae was extracted using the supercritical CO2-extraction method. Several experimental conditions were investigated in the pressure range of 200-500 bar, with the used volume of cosolvent ethanol in the amount of 1% in the liquid phase at a temperature in the range of 31-70°C. The most effective extraction conditions are pressure 350 bar and temperature 60°C. The extracts were analyzed by HPLC with MS/MS identification. 78 target analytes were isolated from Rhodiola rosea (Russia) using a series of column chromatography and mass spectrometry experiments. The results of the analysis showed a spectrum of the main active ingredients Rh. rosea: salidroside, rhodiolosides (B and C), rhodiosin, luteolin, catechin, quercetin, quercitrin, herbacetin, sacranoside A, vimalin, and others. In addition to the reported metabolites, 29 metabolites were newly annotated in Rh. rosea. There were flavonols: dihydroquercetin, acacetin, mearnsetin, and taxifolin-O-pentoside; flavones: apigenin-O-hexoside derivative, tricetin trimethyl ether 7-O-hexosyl-hexoside, tricin 7-O-glucoronyl-O-hexoside, tricin O-pentoside, and tricin-O-dihexoside; flavanones: eriodictyol-7-O-glucoside; flavan-3-ols: gallocatechin, hydroxycinnamic acid caffeoylmalic acid, and di-O-caffeoylquinic acid; coumarins: esculetin; esculin: fraxin; and lignans: hinokinin, pinoresinol, L-ascorbic acid, glucaric acid, palmitic acid, and linolenic acid. The results of supercritical CO2-extraction from roots and rhizomes of Rh. rosea, in particular, indicate that the extract contained all biologically active components of the plant, as well as inert mixtures of extracted compositions.

3.
Environ Res ; 179(Pt A): 108785, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31606615

RESUMO

Air pollution caused by vehicle emissions remains a serious environmental threat in urban areas. Sedimentation of atmospheric aerosols, surface wash, drainage water, and urbane wastewater can bring vehicle particle emissions into the aquatic environment. However, the level of toxicity and mode of toxic action for this kind of particles are not fully understood. Here we explored the aquatic toxic effects of particulate matter emitted from different types of vehicles on marine microalgae Porphyridium purpureum and Heterosigma akashiwo. We used flow cytometry to evaluate growth rate inhibition, changes in the level of esterase activity, changes in membrane potential and size changes of microalgae cells under the influence of particulate matter emitted by motorcycles, cars and specialized vehicles with different types of engines and powered by different types of fuel. Both microalgae species were highly influenced by the particles emitted by diesel-powered vehicles. These particle samples had the highest impact on survival, esterase activity, and membrane potential of microalgae and caused the most significant increase in microalgae cell size compared to the particles produced by gasoline-powered vehicles. The results of the algae-bioassay strongly correlate with the data of laser granulometry analyses, which indicate that the most toxic samples had a significantly higher percentage of particles in the size range less than 1 µm. Visual observation with an optical microscope showed intensive agglomeration of the particles emitted by diesel-powered vehicles with microalgae cells. Moreover, within the scope of this research, we did not observe the direct influence of metal content in the particles to the level of their aquatic toxicity, and we can conclude that physical damage is the most probable mechanism of toxicity for vehicle emitted particles.


Assuntos
Poluentes Atmosféricos/toxicidade , Microalgas/efeitos dos fármacos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Monitoramento Ambiental , Gasolina , Veículos Automotores , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...