Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1867(7): 130372, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37127204

RESUMO

This study introduces the development of blue-emitting colloidal Cu NCs through a novel and easy PEGylation method using different functional groups, including -SH and -COOH. The surface functionalization controls the size, cellular toxicity, and emission properties of Cu NCs. The combination of PEG, thiol, and carboxylic groups protects the particle surface from aggregation and oxidation. Among the samples, CAGP (Surface modified Cu NCs with -SH-COOH-PEG combination) emerges as an amazing candidate with the lowest toxicity and enhanced blue emission properties. The bright blue fluorescence emission from Hela cells after treatment with CAGP demonstrated this property. It also has excellent peroxide sensing potential, with a detection limit of 1.4 µM. Because of their excellent bioimaging and peroxide sensing properties, these Cu NCs could be a promising candidate for cellular oxidative stress sensing applications with high clinical relevance.


Assuntos
Nanopartículas Metálicas , Peróxidos , Humanos , Células HeLa , Cobre , Polietilenoglicóis
2.
Cancer Treat Res Commun ; 32: 100613, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908410

RESUMO

Drug resistance of cancer cells is a significant impediment to effective chemotherapy. One primary reason for this is copper exporters - ATPase copper transporting alpha (ATP7A) and ATPase copper transporting beta (ATP7B). These molecular pumps belong to P-type ATPases and dispose off the Platinum (Pt) based anticancer drugs from cancer cells, causing resistance in them. For the disposal of Pt-drugs, copper exporters require phosphorylation mediated by protein kinase D (PKD) for their activation and trafficking. Even though various research works are underway to overcome resistance to anticancer drugs, the role of PKD is mainly ignored. In this study, we have found a significant upregulation of ATP7A and ATP7B in cervical cancer cells (HeLa) and Liver Hepatocellular Carcinoma cells (HepG2) in the presence of Cisplatin or Carboplatin; both at transcriptional as well as translational levels. Interestingly, the expression of ATP7A and ATP7B were significantly downregulated in the presence of a PKD inhibitor (CID2011756), resulting in the reduction of PKD mediated phosphorylation of ATP7A/7B. This causes enhancement of proteasome-mediated degradation of ATP7A/7B and thereby sensitizes the cells towards Cisplatin and Carboplatin. Similarly, the treatment of Cisplatin resistant HepG2 cells with PKD inhibitor causes enhanced sensitivity towards Cisplatin drug. However, the presence of proteasome inhibitor (MG132) reversed the effect of the PKD inhibitor on the expression level of ATP7A/7B, indicating the necessity of phosphorylation for its stability. Hence, we conclude that the combinatorial usage of Cisplatin with drugs targeting PKD can be developed as an effective chemotherapeutic approach to overcome drug resistance.


Assuntos
Antineoplásicos , Proteínas de Transporte de Cátions , Neoplasias , Adenosina Trifosfatases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Proteínas de Transporte de Cátions/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Cobre/metabolismo , Cobre/farmacologia , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Fragmentos de Peptídeos/metabolismo , Platina , Proteína Quinase C , Inibidores de Proteínas Quinases/farmacologia
3.
Sci Rep ; 12(1): 6247, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428770

RESUMO

The homeostatic control of Sodium (Na+) ion in the human body assumes paramount relevance owing to its physiological importance. Any deviation from the normal level causes serious health problems like hypernatremia, hyponatremia, stroke, kidney problems etc. Therefore, quantification of Na+ levels in body fluids has significant diagnostic and prognostic importance. However, interfering ions like Potassium ion (K+) is the major hurdle in sodium detection. In this work, we synthesized the clusters of 3-9 nm-sized highly stable and pure Copper nanoparticles surface functionalised with curcumin, through chemical reduction method. Each cluster of particles is encapsulated in a curcumin layer which is clearly visible in TEM images. The results show that these curcumin functionalized Cu NPs (CuC) are highly selective to the colorimetric detection of Na+. The ions like K+, Mg2+ and Zn2+ did not interfere with the Na+ in this sensing technique. Low-cost paper-based sensor strips are fabricated and calibrated for the sensing of sodium in the physiological range and shade cards were developed as a calorimetric guide for estimation of Na+ which makes them ideal point of care diagnostic platform. We demonstrate that the proposed CuC paper strip can be used for detecting Na+ concentration within the whole physiological range in both blood serum and urine.


Assuntos
Curcumina , Nanopartículas , Colorimetria/métodos , Cobre , Humanos , Íons , Sistemas Automatizados de Assistência Junto ao Leito , Sódio
4.
ACS Omega ; 6(12): 8646-8655, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33817526

RESUMO

The modern epoch of semiconductor nanotechnology focuses on its application in biology, especially in medical sciences, to fetch direct benefits to human life. Fabrication of devices for biosensing and bioimaging is a vibrant research topic nowadays. Luminescent quantum dots are the best option to move with, but most of them are toxic to living organisms and hence cannot be utilized for biological applications. Recent publications demonstrate that surface treatment on the nanoparticles leads to enhanced luminescence properties with a drastic reduction in toxicity. The current work introduces surface-modified CdS, prepared via a simple green chemical route with different medicinal leaf extracts as the reaction media. Lower toxicity and multiple emissions in the visible region, observed for the CdS-O.tenuiflorum hybrid structures, make them a better option for future biological applications. Furthermore, the hybrid structure showed enhanced electrical properties, which promises its use in modifying the current optoelectronic devices.

5.
Virusdisease ; 32(1): 78-84, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33688556

RESUMO

Immunochromatographic assay kits are used in primary diagnostics which is based on the principle of antigen and antibody interaction. These kits play pivotal role in rapid surveillance of infectious diseases at early stages as well as for the surveillance of the contagious diseases. The immunochromatographic test kits lacks sensitivity and specificity with certain diseases. In this study, our intention was to develop a rapid test kit for SARS-COV-2 with a novel diluent system to enhance the efficacy of antigen-antibody binding and thereby the improvement in the sensitivity outlined. Finally, IgG antibodies against SARS-COV-2 virus peptides were analyzed using 25 positive and 25 negative confirmed clinical samples. The sensitivity of the clinical studies showed 91% sensitivity and 100% specificity. Therefore, the authors propose that this assay will be a potential tool for efficient community or sentinel surveillance of SARS-COV-2 infection and additionally, for effective monitoring of convalescent sera therapy.

6.
ACS Omega ; 5(39): 25390-25399, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33043219

RESUMO

A novel greener methodology is reported for the synthesis of titanium dioxide (TiO2) nanoparticles (NPs) using gum Arabic (Acacia senegal) and the characterization of the ensuing TiO2 NPs by various techniques such as X-ray diffraction (XRD), Fourier transform infrared, Raman spectroscopy, scanning electron microscopy-energy dispersive X-ray, transmission electron microscopy (TEM), high resolution-TEM, and UV-visible spectroscopy. The XRD analysis confirmed the formation of TiO2 NPs in the anatase phase with high crystal purity, while TEM confirmed the size to be 8.9 ± 1.5 nm with a spherical morphology. The electrode for the electrochemical detection of Pb2+ ions was modified by a carbon paste fabricated using the synthesized TiO2 NPs. Compared to the bare electrode, the fabricated electrode exhibited improved electro-catalytic activity toward the reduction of Pb2+ ions. The detection limit, quantification limit, and the sensitivity of the developed electrode were observed by using differential pulse voltammetry to be 506 ppb, 1.68 ppm, and 0.52 ± 0.01 µA µM-1, respectively. The constructed electrode was tested for the detection of lead content in plastic toys.

7.
Nanoscale Adv ; 2(12): 5777-5789, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133864

RESUMO

Dengue is a major health concern causing significant mortality, morbidity and economic loss. The development of anti-dengue viral drugs is challenging due to high toxicity, as well as off-target/side effects. We engineered size tuned ZnS QDs as a platform for the efficient delivery of mycophenolic acid (MPA) against dengue virus serotype 2 (DENV2) to evaluate the drug efficacy and toxicity using the DENV2 sub-genomic replicon system in BHK21 cells. The results indicate that the Selectivity Index 50 (SI50) of the ZnS QD-MPA conjugate was two orders higher than that of free MPA with lower cytotoxicity. The effect is attributed to the sustained release of MPA from ZnS QD-MPA. The conjugated MPA caused significant inhibition of the virus at the level of replication and viral protein translation. The study underpins the efficiency of the ZnS QD for the delivery of antiviral drugs against DENV2 with negligible toxicity and side effects.

8.
ACS Appl Bio Mater ; 3(2): 1245-1257, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35019325

RESUMO

Metal nanoparticles-based sensors invoked much research attention in the biomedical field, especially in applications involving live cell imaging and monitoring. Here, a simple cost-effective method is adopted to synthesize glutathione coated copper nanoclusters (Cu-GSH NCs) with strong bright red fluorescence (625 nm). The clusters were found to be containing five Cu(0) atoms complexed with one molecule of glutathione (GSH) as evidenced by MALDI-TOF MS analysis. The synthesized Cu-GSH NCs system responds linearly to the pH in the acidic and alkaline ranges with a high degree of in vitro pH reversibility, projecting its potential as a real time pH sensor. Higher intensity emission observed in acidic conditions can be exploited for its employability as cellular organelle markers. The imaging and sensing potential of Cu-GSH NCs in the live human adenocarcinoma cell line, the HeLa cells, was tested. The treatment of HeLa cells for 48 h imparted deep red fluorescence, owing to the lower level of intracellular pH in cancer cells. In contrast, the imaging using normal cell lines (L-132, lung epithelial cell line) showed significantly lower fluorescence intensity as compared to that of HeLa cells. The subcellular pH-dependent fluorescence emission of Cu-GSH NCs was further assessed by treating HeLa cells with proton pump (V-ATPase) inhibitor Bafilomycin A1, which increases the vesicular pH. Interestingly, the fluorescent intensity of HeLa cells decreases with increasing concentration of Bafilomycin A1 in the presence of Cu-GSH NCs, as evidenced by the fluorescence microscopic images and quantitative fluorescent output. Accordingly, the developed Cu-GSH NCs system can be employed as an efficient pH-based bioimaging probe for the detection of cancer cells with an implied potential for the label free subcellular organelle tracking and marking. Importantly, the Cu-GSH NCs can be used for live cell pH imaging owing to their high degree of reversibility in sensing of pH variation.

9.
Anal Biochem ; 591: 113568, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31881180

RESUMO

Replication defective recombinant Ad5 vectors (rAdV5) are extensively explored for its applications in gene therapy and vaccine delivery. Ad5 enter into monocytes and macrophages through CAR independent route as an immune complex termed as antibody-dependent enhancement (ADE). We developed an effective method for estimating the ADE of rAdV5 encoding GFP (rAdV5-GFP) into THP-1 cells, using fluorimetric semi-quantification of GFP. Initially, twenty numbers of human sera samples were screened in HeLa cells for anti-Ad5 antibody titer using neutralization assay. Uptake of rAdV5-GFP in THP-1 cells was observed only after pre-incubation with the serially diluted human sera which are attributed to ADE. The optimal dilution which showed the maximum GFP expression as per the fluorescence microscopic analysis in THP-1 cells was used for further analysis. Fluorimetric analysis of the THP-1 cell lysate showed a maximum GFP intensity of 17058 RFU, which was equivalent to the 0.397 pmoles of Alexa Fluor 488 under the same experimental condition. Similarly, immunoblot analysis of GFP in THP-1 cell lysate and HeLa cell lysate confirmed the entry of rAdV5-GFP into the cells. The assay can serve as a platform for understanding the molecular events involved in ADE for the uptake of viruses into immune cells.


Assuntos
Anticorpos Facilitadores , Imunofluorescência/métodos , Vetores Genéticos , Adenovírus Humanos , Adulto , Anticorpos Antivirais/química , Feminino , Proteínas de Fluorescência Verde/química , Células HEK293 , Células HeLa , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Células THP-1 , Adulto Jovem
10.
Trop Med Int Health ; 25(3): 319-327, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816141

RESUMO

OBJECTIVES: To investigate the cellular and molecular pathophysiology involved in the development of fibrotic skin of grade-3 lymphoedema patients with a focus on collagen types. METHODS: Fibrotic and normal skin biopsy samples obtained from grade-3 lymphoedema patients and normal individuals, respectively, were analysed by histopathology, quantitative real-time PCR and immunohistochemistry to examine collagen gene expression. RESULTS: Histopathologic analysis revealed epidermal changes such as orthokeratosis, hypergranulosis and irregular acanthosis in the skin biopsies. The thickened dermis contained nodules of haphazardly arranged thick collagen bundles. Real-time PCR data showed significant (P-value 0.0003) up-regulation of Collagen type I and type III gene transcripts in the fibrotic skin of patients resulting in 38.94-fold higher transcription of Collagen type III alpha-1 gene than of Collagen type I alpha-1 gene. Semi-quantification of the per cent of haematoxylin-DAB-stained area of immunohistochemistry images also showed significant (P < 0.0001) enhancement of both collagen proteins in the fibrotic skin of patients vs. normal human skin. CONCLUSIONS: Gene transcript analysis revealed significant up-regulation of Collagen type III vs. Collagen type I in fibrotic skin of limb nodules from patient biopsies. Histopathological and immunohistochemical analysis also revealed enhancement of Collagen types I and III in fibrotic vs. normal skin. The findings of this preliminary study indicate the potentially significant involvement of Collagen type III in the development of the fibrotic skin of grade-3 lymphoedema patients.


OBJECTIFS: Etudier la physiopathologie cellulaire et moléculaire impliquée dans le développement de la fibrose cutanée chez les patients atteints de lymphœdème de grade 3 en mettant l'accent sur les types de collagène. MÉTHODES: Des échantillons de biopsie cutanée fibrotique et normale obtenus respectivement de patients atteints de lymphœdème de grade 3 et d'individus normaux ont été analysés par histopathologie, par PCR quantitative en temps réel et par immunohistochimie pour examiner l'expression des gènes de collagène. RÉSULTATS: L'analyse histopathologique a révélé des changements épidermiques tels que l'orthokératose, l'hypergranulose et l'acanthose irrégulière dans les biopsies cutanées. Le derme épaissi contenait des nodules de faisceaux de collagène épais disposés au hasard. Les données de PCR en temps réel ont montré une régulation à la hausse significative (P = 0.0003) des transcrits des gènes de collagène de type I et III dans la peau fibrotique des patients, résultant en une transcription 38,94 fois plus élevée du gène alpha-1 du collagène de type III par rapport à celui du gène alpha-1 du collagène de type I. La semi-quantification du pourcentage de zone colorée à l'hématoxyline-DAB des images d'immunohistochimie a également montré une amélioration significative (P < 0.0001) des deux protéines de collagène dans la peau fibrotique des patients par rapport à la peau humaine normale. CONCLUSIONS: L'analyse de transcription génétique a révélé une régulation à la hausse importante du collagène de type III par rapport à celle du collagène de type I dans la peau fibrotique des nodules des membres provenant de biopsies de patients. L'analyse histopathologique et immunohistochimique a également révélé une amélioration du collagène de types I et III dans la peau fibrotique pa rapport à la peau normale. Les résultats de cette étude préliminaire indiquent l'implication potentiellement significative du collagène de type III dans le développement de la peau fibrotique des patients atteints de lymphœdème de grade 3.


Assuntos
Colágeno Tipo III/genética , Filariose Linfática , Linfedema/fisiopatologia , Pele/patologia , Adulto , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Fibrose , Humanos , Índia , Extremidade Inferior , Linfedema/genética , Linfedema/patologia , Masculino , Pessoa de Meia-Idade , População Branca
11.
Microb Pathog ; 137: 103762, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31560972

RESUMO

Cellular autophagy (Macrophagy) is a self-degradative process, executed through the network of autophagy associated genes (ATGs) encoded proteins. Both in vitro and in vivo studies suggest that dengue virus (DENV) induces autophagy and supports the viral genome replication and translation. Therefore, the cellular autophagy induced by dengue virus can be a good target for antiviral drug development. The action of mycophenolic acid (MPA), a specific inhibitor of DENV replication, was investigated in the stable BHK-21/DENV2 replicon cells. The inhibition was mediated by enhanced degradation of autophagic substrates in stable BHK-21/DENV2 replicon cells as evidenced by a decrease in lapidated LC3 (LC3II) and p62 expression in the presence of MPA. In contrast, the results indicated that four gene sets, namely Transmembrane protein 74 (TMEM74), Unc-51-like kinase 2 (ULK2), Cathepsin D (CTSD) and Estrogen receptor 1 (ESR1) were upregulated in stable BHK-21/DENV2 replicon cells, due to the sustained dynamic replication of DENV2 genome. These ATGs involved in the pre-autophagosomal structure (PAS) formation, were suppressed in the presence MPA. Instead, MPA induced the expression of different set of autophagy genes such as ATG4, AKT1, APP, ATG16L1, ATG16L2, B2M and HPRT1. An enzyme involved in the nucleotide salvage pathway, HPRT1, was highly expressed in the presence of MPA. The study shows that DENV2 replication is dependent on PAS formation and is inhibited in the presence of MPA by enhancing the degradation of autophagic substrates and suppression of PAS formation. This study provides impetus in designing MPA analogues to effectively inhibit dengue viral replication.


Assuntos
Antivirais/farmacologia , Autofagia/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Ácido Micofenólico/farmacologia , Replicon/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Catepsina D/metabolismo , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Dengue , Vírus da Dengue/genética , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Microglobulina beta-2/metabolismo
12.
Nanotoxicology ; 13(8): 1005-1020, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31012782

RESUMO

Size dependent cytotoxicity of ZnS nanoparticles (NPs) was investigated in Human embryonic kidney (HEK-293) cell lines by MTT assay. The cells were incubated with varying concentration of ZnS NPs of sizes 4 nm, 10 nm and 25 nm for 48 h under different (cell culture) media viscosity conditions. The results showed that the toxicity is decreased with the particle size while it is negatively correlated with the viscosity of the media. Theoretical calculations were performed, by assuming equivolume stress model and the same is explained with schematics. Similarly, the effect of particle size and shape on toxicity is explained based on the theoretical calculation of the stress. The calculations showed that out of the possible cellular entry mechanisms for the cubic or cage shaped NPs, the highest toxicity is predicted for the entry through the corners while the lowest toxicity is predicted for the entry through the faces. The experimental observations depicting the cytotoxicity as a function of the viscosity of cell culture media was also validated by stress calculations and are found to be consistent. Studies on size and shape dependence of semiconductor NPs like ZnS is rather scarce, while the role of viscosity of cell culture media on the cytotoxicity is being reported for the first time. In summary, the study indicates that the cytotoxicity is an integral function of size and shape of NPs, physical parameters of the cell culture media in addition to the post entry biochemical interactions with the host cell.


Assuntos
Nanopartículas Metálicas/toxicidade , Sulfetos/toxicidade , Compostos de Zinco/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Nanopartículas Metálicas/química , Tamanho da Partícula , Sulfetos/química , Compostos de Zinco/química
13.
Antiviral Res ; 162: 71-78, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30529358

RESUMO

The dengue virus is considered to be a globally important human pathogen prevalent in tropical and subtropical regions of the world. According to a recent estimate, the disease burden due to DENV infections is ∼390 million infections per year globally in ∼100 countries including the southern US, Puerto Rico and Hawaii, resulting in nearly ∼25,000 deaths mostly among children. Despite the significant morbidity and mortality that results from DENV infections, there is currently no effective chemotherapeutic treatment for DENV infections. We identified curcumin as an inhibitor of DENV2 NS2B/NS3protease in a previous high-throughput screening (HTS) campaign. We synthesized four analogues of curcumin (curcuminoids) and tested the in vitro protease inhibition activity and inhibition of replication by cell-based assays. The results revealed that curcumin is a weak inhibitor of the viral protease. However, the analogues exhibited more potent inhibition of DENV infectivity in plaque assays suggesting that the cellular pathway(s) required for viral replication and/or assembly are targeted by these compounds. Further analysis shows that inhibition of genes involved in lipid biosynthesis, and of actin polymerization by curcuminoids, are likely to be involved as their mode of action in DENV2-infected cells. Three of the curcumin derivatives possess good selectivity indices (SI) (>10) when compared to the parent curcumin.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Diarileptanoides/farmacologia , Ácido Graxo Sintases/antagonistas & inibidores , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Vírus da Dengue/fisiologia , Diarileptanoides/análogos & derivados , Humanos , Macaca mulatta , Replicação Viral/efeitos dos fármacos
14.
Nanomaterials (Basel) ; 8(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518035

RESUMO

The present study reports a green and sustainable method for the synthesis of titanium dioxide (TiO2) nanoparticles (NPs) from titanium oxysulfate solution using Kondagogu gum (Cochlospermum gossypium), a carbohydrate polymer, as the NPs formation agent. The synthesized TiO2 NPs were categorized by techniques such as X-Ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy analysis, Raman spectroscopy, scanning electron microscope- Energy-dispersive X-ray spectroscopy (SEM-EDX), Transmission electron microscopy (TEM), High-resolution transmission electron microscopy (HR-TEM), UV-visible spectroscopy, Brunauer-Emmett-Teller (BET) surface area and particle size analysis. Additionally, the photocatalytic actions of TiO2 NPs were assessed with regard to their ability to degrade an organic dye (methylene blue) from aqueous solution in the presence of solar light. Various parameters affecting the photocatalytic activity of the TiO2 NPs were examined, including catalyst loading, reaction time, pH value and calcination temperature of the aforementioned particles. This green synthesis method involving TiO2 NPs explores the advantages of inexpensive and non-toxic precursors, the TiO2 NPs themselves exhibiting excellent photocatalytic activity against dye molecules.

15.
Trop Med Int Health ; 22(10): 1334-1342, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28712153

RESUMO

OBJECTIVES: Human serum protein profiling of the individual infected with multiple dengue virus serotypes for identifying the potential biomarkers and to investigate the cause for the severity of dengue virus infection. METHODS: Dengue virus NS1-positive serum samples were pooled into two groups (S2 and S3) based on the molecular serotyping and number of heterotypic infections. The pooled serum samples were subjected to two-dimensional gel electrophoresis (2DGE) to identify the differentially expressed proteins. The peptide masses of upregulated protein were detected by matrix-assisted laser desorption-ionisation time-of-flight MALDI-TOF mass spectrometry and analysed by MASCOT search engine. The results were compared with the control group (S1). The commonly upregulated protein was validated by quantitative ELISA and compared with control as well as single serotypic infected samples. RESULTS: Based on 2DGE, total thirteen proteins were differentially upregulated in S2 and S3 groups as compared to control. Some of the upregulated proteins were involved in mediating the complement activation of immune response. The apolipoprotein A-1 (APO A-1) was upregulated in S2 and S3 groups. Upon validation, APO A-1 levels were increased in line with the number of heterotypic infection of dengue viruses. CONCLUSION: Heterotypic infection of dengue viruses upregulate the serum proteins involved in the complement pathway in the early phase of infection. There was a significant increase in the level of APO A-1 in three different serotypic infections of dengue virus as compared to control. Further, the role of APO-A1 can be explored in elucidating the mechanism of dengue pathogenesis.


Assuntos
Vírus da Dengue/classificação , Dengue/virologia , Proteogenômica , Biomarcadores/sangue , Dengue/sangue , Dengue/imunologia , Vírus da Dengue/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Sorotipagem/métodos
16.
PeerJ ; 5: e2970, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28316881

RESUMO

BACKGROUND: Dengue is a global human public health threat, causing severe morbidity and mortality. The occurrence of sequential infection by more than one serotype of dengue virus (DENV) is a major contributing factor for the induction of Dengue Hemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS), two major medical conditions caused by DENV infection. However, there is no specific drug or vaccine available against dengue infection. There are reports indicating the increased incidence of concurrent infection of dengue in several tropical and subtropical regions. Recently, increasing number of DHF and DSS cases were reported in India indicating potential enhancement of concurrent DENV infections. Therefore, accurate determination of the occurrence of DENV serotype co-infections needs to be conducted in various DENV prone parts of India. In this context, the present study was conducted to analyse the magnitude of concurrent infection in northern Kerala, a southwest state of India, during three consecutive years from 2013 to 2015. METHODS: A total of 120 serum samples were collected from the suspected dengue patients. The serum samples were diagnosed for the presence of dengue NS1 antigen followed by the isolation of dengue genome from NS1 positive samples. The isolated dengue genome was further subjected to RTPCR based molecular serotyping. The phylogenetic tree was constructed based on the sequence of PCR amplified products. RESULTS: Out of the total number of samples collected, 100 samples were positive for dengue specific antigen (NS1) and 26 of them contained the dengue genome. The RTPCR based molecular serotyping of the dengue genome revealed the presence of all four serotypes with different combinations. However, serotypes 1 and 3 were predominant combinations of concurrent infection. Interestingly, there were two samples with all four serotypes concurrently infected in 2013. DISCUSSION: All samples containing dengue genome showed the presence of more than one serotype, indicating 100% concurrent infection. However, the combination of serotypes 1 and 3 was predominant. To the best of our knowledge, this is the first report indicating the concurrent infection of dengue in the northern Kerala, India. The phylogenetic analysis of dengue serotype 1 identified in this study shows a close relationship with the strain isolated in Delhi and South Korea during the 2006 and 2015 epidemics respectively. Similarly this study indicates that the phylogeny of dengue serotype 3 of northern Kerala is more closely related to dengue isolate of Rajasthan state, India. The geographical and climatic conditions of Kerala favours the breeding of both the mosquito vectors of dengue (Aedes albopictus and Aedes aegypti), which may enhance the severity of dengue in the future. Therefore, the study provides an alarming message for the urgent need of an antiviral strategy or other health management systems to curb the spread of dengue infection.

17.
Antiviral Res ; 134: 6-16, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27539384

RESUMO

The mosquito-borne dengue virus serotypes 1-4 (DENV1-4) and West Nile virus (WNV) cause serious illnesses worldwide associated with considerable morbidity and mortality. According to the World Health Organization (WHO) estimates, there are about 390 million infections every year leading to ∼500,000 dengue haemorrhagic fever (DHF) cases and ∼25,000 deaths, mostly among children. Antiviral therapies could reduce the morbidity and mortality associated with flaviviral infections, but currently there are no drugs available for treatment. In this study, a high-throughput screening assay for the Dengue protease was employed to screen ∼120,000 small molecule compounds for identification of inhibitors. Eight of these inhibitors have been extensively analyzed for inhibition of the viral protease in vitro and cell-based viral replication using Renilla luciferase reporter replicon, infectivity (plaque) and cytotoxicity assays. Three of these compounds were identified as potent inhibitors of DENV and WNV proteases, and viral replication of DENV2 replicon and infectious RNA. Fluorescence quenching, kinetic analysis and molecular modeling of these inhibitors into the structure of NS2B-NS3 protease suggest a mode of inhibition for three compounds that they bind to the substrate binding pocket.


Assuntos
Flavivirus/efeitos dos fármacos , Peptídeo Hidrolases/efeitos dos fármacos , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Bibliotecas de Moléculas Pequenas/química , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia , Sítios de Ligação , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/enzimologia , Descoberta de Drogas/métodos , Flavivirus/enzimologia , Fluorescência , Ensaios de Triagem em Larga Escala/métodos , Cinética , Luciferases de Renilla/genética , Modelos Moleculares , Inibidores de Proteases/química , Replicon/efeitos dos fármacos , Proteínas não Estruturais Virais/química , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos , Vírus do Nilo Ocidental/efeitos dos fármacos , Vírus do Nilo Ocidental/enzimologia
18.
Int J Mol Sci ; 17(3): 291, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26927085

RESUMO

The recent emergence of multiple technologies for modifying gene structure has revolutionized mammalian biomedical research and enhanced the promises of gene therapy. Over the past decade, RNA interference (RNAi) based technologies widely dominated various research applications involving experimental modulation of gene expression at the post-transcriptional level. Recently, a new gene editing technology, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system, has received unprecedented acceptance in the scientific community for a variety of genetic applications. Unlike RNAi, the CRISPR/Cas9 system is bestowed with the ability to introduce heritable precision insertions and deletions in the eukaryotic genome. The combination of popularity and superior capabilities of CRISPR/Cas9 system raises the possibility that this technology may occupy the roles currently served by RNAi and may even make RNAi obsolete. We performed a comparative analysis of the technical aspects and applications of the CRISPR/Cas9 system and RNAi in mammalian systems, with the purpose of charting out a predictive picture on whether the CRISPR/Cas9 system will eclipse the existence and future of RNAi. The conclusion drawn from this analysis is that RNAi will still occupy specific domains of biomedical research and clinical applications, under the current state of development of these technologies. However, further improvements in CRISPR/Cas9 based technology may ultimately enable it to dominate RNAi in the long term.


Assuntos
Sistemas CRISPR-Cas , Marcação de Genes/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Marcação de Genes/tendências , Humanos
19.
Antimicrob Agents Chemother ; 59(1): 85-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25313218

RESUMO

Dengue virus (DENV), a member of the Flaviviridae family, is a mosquito-borne pathogen and the cause of dengue fever. The increasing prevalence of DENV worldwide heightens the need for an effective vaccine and specific antivirals. Due to the dependence of DENV upon the lipid biosynthetic machinery of the host cell, lipid signaling and metabolism present unique opportunities for inhibiting viral replication. We screened a library of bioactive lipids and modulators of lipid metabolism and identified 4-hydroxyphenyl retinamide (4-HPR) (fenretinide) as an inhibitor of DENV in cell culture. 4-HPR inhibits the steady-state accumulation of viral genomic RNA and reduces viremia when orally administered in a murine model of DENV infection. The molecular target responsible for this antiviral activity is distinct from other known inhibitors of DENV but appears to affect other members of the Flaviviridae, including the West Nile, Modoc, and hepatitis C viruses. Although long-chain ceramides have been implicated in DENV replication, we demonstrate that DENV is insensitive to the perturbation of long-chain ceramides in mammalian cell culture and that the effect of 4-HPR on dihydroceramide homeostasis is separable from its antiviral activity. Likewise, the induction of reactive oxygen species by 4-HPR is not required for the inhibition of DENV. The inhibition of DENV in vivo by 4-HPR, combined with its well-established safety and tolerability in humans, suggests that it may be repurposed as a pan-Flaviviridae antiviral agent. This work also illustrates the utility of bioactive lipid screens for identifying critical interactions of DENV and other viral pathogens with host lipid biosynthesis, metabolism, and signal transduction.


Assuntos
Vírus da Dengue/crescimento & desenvolvimento , Dengue/tratamento farmacológico , Fenretinida/uso terapêutico , Viremia/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Feminino , Células HEK293 , Hepacivirus/crescimento & desenvolvimento , Humanos , Camundongos , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Células Vero , Vírus do Nilo Ocidental/crescimento & desenvolvimento
20.
Biochem J ; 463(2): 167-76, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25242165

RESUMO

Copper ATPases, in analogy with other members of the P-ATPase superfamily, contain a catalytic headpiece including an aspartate residue reacting with ATP to form a phosphoenzyme intermediate, and transmembrane helices containing cation-binding sites [TMBS (transmembrane metal-binding sites)] for catalytic activation and cation translocation. Following phosphoenzyme formation by utilization of ATP, bound copper undergoes displacement from the TMBS to the lumenal membrane surface, with no H+ exchange. Although PII-type ATPases sustain active transport of alkali/alkali-earth ions (i.e. Na+, Ca2+) against electrochemical gradients across defined membranes, PIB-type ATPases transfer transition metal ions (i.e. Cu+) from delivery to acceptor proteins and, prominently in mammalian cells, undergo trafficking from/to various membrane compartments. A specific component of copper ATPases is the NMBD (N-terminal metal-binding domain), containing up to six copper-binding sites in mammalian (ATP7A and ATP7B) enzymes. Copper occupancy of NMBD sites and interaction with the ATPase headpiece are required for catalytic activation. Furthermore, in the presence of copper, the NMBD allows interaction with protein kinase D, yielding phosphorylation of serine residues, ATP7B trafficking and protection from proteasome degradation. A specific feature of ATP7A is glycosylation and stabilization on plasma membranes. Cisplatin, a platinum-containing anti-cancer drug, binds to copper sites of ATP7A and ATP7B, and undergoes vectorial displacement in analogy with copper.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Transporte de Cátions/química , Cobre/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Biocatálise , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...