Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 93(2): 022608, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26986378

RESUMO

It was recently suggested that the electrostatic double-layer force between colloidal particles might weaken at high hydrostatic pressure encountered, for example, in deep seas or during oil recovery. We have addressed this issue by means of a specially designed optical trapping setup that allowed us to explore the interaction of a micrometer-sized glass bead and a solid glass wall in water at hydrostatic pressures of up to 1 kbar. The setup allowed us to measure the distance between bead and wall with a subnanometer resolution. We have determined the Debye lengths in water for salt concentrations of 0.1 and 1 mM. We found that in the pressure range from 1 bar to 1 kbar the maximum variation of the Debye lengths was <1 nm for both salt concentrations. Furthermore, the magnitude of the zeta potentials of the glass surfaces in water showed no dependency on pressure.

2.
Langmuir ; 28(49): 16812-20, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23181385

RESUMO

We measured the forces required to slide sessile drops over surfaces. The forces were measured by means of a vertical deflectable capillary stuck in the drop. The drop adhesion force instrument (DAFI) allowed the investigation of the dynamic lateral adhesion force of water drops of 0.1 to 2 µL volume at defined velocities. On flat PDMS surfaces, the dynamic lateral adhesion force increases linearly with the diameter of the contact area of the solid-liquid interface and linearly with the sliding velocity. The movement of the drop relative to the surfaces enabled us to resolve the pinning of the three-phase contact line to individual defects. We further investigated a 3D superhydrophobic pillar array. The depinning of the receding part of the rim of the drop occurred almost simultaneously from four to five pillars, giving rise to peaks in the lateral adhesion force.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...