Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 43(10): 2457-62, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10508024

RESUMO

HMR3647 is a semisynthetic representative of a new group of drugs, the ketolides, derived from erythromycin A. Since macrolides have been shown to accumulate in human polymorphonuclear cells (PMNs), we have investigated the ability of the molecule HMR3647 to enter human PMNs as well as other cell types, such as peripheral blood mononuclear cells and cell lines of hematopoietic and nonhematopoietic origin. In these experiments, HMR3647 was compared to erythromycin A, azithromycin, clarithromycin, and roxithromycin. Our results show that HMR3647 is specifically trapped in PMNs, where it is concentrated up to 300 times. In addition, it is poorly released by these cells, 80% of the compound remaining cell associated after 2 h in fresh medium. By contrast, it is poorly internalized and quickly released by the other cell types studied. This differs from the results obtained with the macrolide molecules, which behaved similarly in the different cells studied. In addition, subcellular fractionation of PMNs allowed us to identify the intracellular compartment where HMR3647 was trapped. In PMNs, more than 75% of the molecule was recovered in the azurophil granule fraction. Similarly, in NB4 cells differentiated into PMN-like cells, almost 60% of the molecules accumulated in the azurophil granule fraction. In addition, when HMR3647 was added to disrupted PMNs, 63% accumulated in the azurophil granules. Therefore, this study shows that the ketolide HMR3647 specifically accumulates in PMN azurophil granules, thus favoring its delivery to bacteria phagocytosed in these cells.


Assuntos
Antibacterianos/metabolismo , Grânulos Citoplasmáticos/metabolismo , Cetolídeos , Macrolídeos , Neutrófilos/metabolismo , Linhagem Celular , Centrifugação , Eritromicina/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Frações Subcelulares
2.
Apoptosis ; 2(2): 125-35, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-14646547

RESUMO

IL-1beta converting enzyme (ICE) and ICE-related proteases (IRPs) have been suggested to play a central role in apoptosis. We report the use of peptidic ICE inhibitors to reassess the role of this enzyme in the apoptosis induced by Fas or TNFalpha receptor ligation in Jurkat cells, U937 cells or monocytes. Our results show that inhibition of IL-1beta processing can be dissociated from inhibition of apoptosis. Indeed, two out of three com-pounds active on ICE are not inhibitory for apoptosis. This shows that ICE is not required for progression in the apoptotic pathway, but that one or several IRPs are necessary. In addition, Western blot analysis of cell lysates shows that both ICE and CPP32 precursors disappear rapidly after apoptosis induction, while ICH-1L precursor remains intact. Concomitant appearance of cleavage products can be visualized for CPP32, but not for ICE, suggesting that the former is proteolytically activated. In addition, this precursor cleavage can be blocked by an ICE inhibitor active on apoptosis. Altogether, our data support the hypothesis that one or several IRPs are necessary for apoptosis and are responsible for ICE and CPP32 cleavage during this process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...