Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Syst Biol ; 20(6): 626-650, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724853

RESUMO

More than 500 kinases are implicated in the control of most cellular process in mammals, and deregulation of their activity is linked to cancer and inflammatory disorders. 80 clinical kinase inhibitors (CKIs) have been approved for clinical use and hundreds are in various stages of development. However, CKIs inhibit other kinases in addition to the intended target(s), causing both enhanced clinical effects and undesired side effects that are only partially predictable based on in vitro selectivity profiling. Here, we report an integrative approach grounded on the use of chromatin modifications as unbiased, information-rich readouts of the functional effects of CKIs on macrophage activation. This approach exceeded the performance of transcriptome-based approaches and allowed us to identify similarities and differences among CKIs with identical intended targets, to recognize novel CKI specificities and to pinpoint CKIs that may be repurposed to control inflammation, thus supporting the utility of this strategy to improve selection and use of CKIs in clinical settings.


Assuntos
Epigenoma , Inibidores de Proteínas Quinases , Inibidores de Proteínas Quinases/farmacologia , Humanos , Animais , Camundongos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
2.
Front Endocrinol (Lausanne) ; 14: 1272646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842307

RESUMO

Inflammation-dependent changes in gene expression programs in innate immune cells, such as macrophages, involve extensive reprogramming of metabolism. This reprogramming is essential for the production of metabolites required for chromatin modifications, such as acetyl-CoA, and regulate their usage and availability impacting the macrophage epigenome. One of the most transcriptionally induced proinflammatory mediator is nitric oxide (NO), which has been shown to inhibit key metabolic enzymes involved in the production of these metabolites. Recent evidence indicates that NO inhibits mitochondrial enzymes such as pyruvate dehydrogenase (PDH) in macrophages induced by inflammatory stimulus. PDH is involved in the production of acetyl-CoA, which is essential for chromatin modifications in the nucleus, such as histone acetylation. In addition, acetyl-CoA levels in inflamed macrophages are regulated by ATP citrate lyase (ACLY) and citrate transporter SLC25A1. Interestingly, acetyl-CoA producing enzymes, such as PDH and ACLY, have also been reported to be present in the nucleus and to support the local generation of cofactors such as acetyl-CoA. Here, we will discuss the mechanisms involved in the regulation of acetyl-CoA production by metabolic enzymes, their inhibition by prolonged exposure to inflammation stimuli, their involvement in dynamic inflammatory expression changes and how these emerging findings could have significant implications for the design of novel therapeutic approaches.


Assuntos
ATP Citrato (pro-S)-Liase , Epigênese Genética , Humanos , Acetilcoenzima A/metabolismo , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Inflamação/genética , Aciltransferases/genética , Cromatina
3.
Trends Immunol ; 43(9): 693-695, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945112

RESUMO

Mutations in two antagonistic regulators of DNA methylation, DNMT3A and TET2, are associated with clonal hematopoiesis and increased risk of cardiovascular disorders. Recently, Cobo et al. traced the mechanistic bases for such links to loss of mitochondrial integrity, cytoplasmic dispersion of mitochondrial DNA, and the subsequent activation of interferon-stimulated genes (ISGs) in macrophages.


Assuntos
Doenças Cardiovasculares , Hematopoiese Clonal , Hematopoese , Humanos , Inflamação , Mutação
4.
Genes Dev ; 36(7-8): 414-432, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35361678

RESUMO

Six methyltransferases divide labor in establishing genomic profiles of histone H3 lysine 9 methylation (H3K9me), an epigenomic modification controlling constitutive heterochromatin, gene repression, and silencing of retroelements. Among them, SETDB1 is recruited to active chromatin domains to silence the expression of endogenous retroviruses. In the context of experiments aimed at determining the impact of SETDB1 on stimulus-inducible gene expression in macrophages, we found that loss of H3K9me3 caused by SETDB1 depletion was associated with increased recruitment of CTCF to >1600 DNA binding motifs contained within SINE B2 repeats, a previously unidentified target of SETDB1-mediated repression. CTCF is an essential regulator of chromatin folding that restrains DNA looping by cohesin, thus creating boundaries among adjacent topological domains. Increased CTCF binding to SINE B2 repeats enhanced insulation at hundreds of sites and increased loop formation within topological domains containing lipopolysaccharide-inducible genes, which correlated with their impaired regulation in response to stimulation. These data indicate a role of H3K9me3 in restraining genomic distribution and activity of CTCF, with an impact on chromatin organization and gene regulation.


Assuntos
Cromatina , Inativação Gênica , Heterocromatina , Metilação , Retroelementos
5.
EMBO Rep ; 22(9): e53251, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34328708

RESUMO

Macrophages react to microbial and endogenous danger signals by activating a broad panel of effector and homeostatic responses. Such responses entail rapid and stimulus-specific changes in gene expression programs accompanied by extensive rewiring of metabolism, with alterations in chromatin modifications providing one layer of integration of transcriptional and metabolic regulation. A systematic and mechanistic understanding of the mutual influences between signal-induced metabolic changes and gene expression is still lacking. Here, we discuss current evidence, controversies, knowledge gaps, and future areas of investigation on how metabolic and transcriptional changes are dynamically integrated during macrophage activation. The cross-talk between metabolism and inflammatory gene expression is in part accounted for by alterations in the production, usage, and availability of metabolic intermediates that impact the macrophage epigenome. In addition, stimulus-inducible gene expression changes alter the production of inflammatory mediators, such as nitric oxide, that in turn modulate the activity of metabolic enzymes thus determining complex regulatory loops. Critical issues remain to be understood, notably whether and how metabolic rewiring can bring about gene-specific (as opposed to global) expression changes.


Assuntos
Inflamação , Ativação de Macrófagos , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Ativação de Macrófagos/genética , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...