Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimmunomodulation ; 30(1): 346-373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37952531

RESUMO

INTRODUCTION: Considering significance of mechanisms of central tolerance for development of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), and suppressive influence of circulating proinflammatory cytokines and alterations in brain-thymus communication, characteristic for the central nervous system (CNS) autoimmune diseases, on thymopoiesis, the study interogated putative strain-based thymus-related specificities relevant for the opposite effects of ageing on susceptibility of Dark Agouti (DA) and Albino Oxford (AO) rats to EAE. METHODS: Quantitative and qualitative changes in thymopoiesis including underlying mechanisms were examined using flow cytometry and RT-qPCR quantification of mRNAs for molecules relevant for integrity of stroma and T-cell development, respectively. RESULTS: With ageing, differently from DA rats, in AO rats the surface density of CD90, a negative regulator of selection threshold, on thymocytes undergoing lineage commitment was upregulated (consistent with TGF-ß expression downregulation), whereas the generation of natural CD4+CD25+Foxp3+ regulatory T cells (nTregs) was impaired reflecting differences in thymic expression of cytokines supporting their development. Additionally, specifically in old AO rats, in whom EAE development depends on IL-17-producing CD8+ T cells, their thymic differentiation was augmented, reflecting augmented thymic IL-4 expression. In turn, differently from old DA rats developing self-limiting EAE, in age-matched AO rats developing EAE of prolonged duration, EAE development led to impaired generation of nTregs and accumulation of proinflammatory, cytotoxic CD28-CD4+ T cells in the periphery. DISCUSSION: The study indicates that strain differences in age-related changes in the efficacy of central tolerance, in addition to enhanced thymic generation of CD8+ T cells prone to differentiate into IL-17-producing cells, could partly explain the opposite effect of ageing on DA and AO rat susceptibility to EAE induction. Additionally, it suggested that EAE development leading to a less efficient thymic output of CD4+ cells and nTregs in old AO rats than their DA counterparts could contribute to prolonged EAE duration in AO compared with DA rats. CONCLUSION: The study warns to caution when designing therapeutic interventions to enhance thymic activity in genetically diverse populations, e.g., humans, and interpreting their outcomes. Furthermore, it indicates that CNS autoimmune pathology may additionally worsen thymic involution and age-related immune changes.


Assuntos
Encefalomielite Autoimune Experimental , Humanos , Ratos , Animais , Interleucina-17 , Medula Espinal , Envelhecimento , Citocinas
2.
Pharmacol Ther ; 243: 108358, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36804434

RESUMO

This review summarizes recent findings related to the role of the sympathetic nervous system (SNS) in pathogenesis of multiple sclerosis (MS) and its commonly used experimental model - experimental autoimmune encephalomyelitis (EAE). They indicate that noradrenaline, the key end-point mediator of the SNS, acting through ß-adrenoceptor, has a contributory role in the early stages of MS/EAE development. This stage is characterized by the SNS hyperactivity (increased release of noradrenaline) reflecting the net effect of different factors, such as the disease-associated inflammation, stress, vitamin D hypovitaminosis, Epstein-Barr virus infection and dysbiosis. Thus, the administration of propranolol, a non-selective ß-adrenoceptor blocker, readily crossing the blood-brain barrier, to experimental rats before the autoimmune challenge and in the early (preclinical/prodromal) phase of the disease mitigates EAE severity. This phenomenon has been ascribed to the alleviation of neuroinflammation (due to attenuation of primarily microglial activation/proinflammatory functions) and the diminution of the magnitude of the primary CD4+ T-cell autoimmune response (the effect associated with impaired autoantigen uptake by antigen presenting cells and their migration into draining lymph nodes). The former is partly related to breaking of the catecholamine-dependent self-amplifying microglial feed-forward loop and the positive feedback loop between microglia and the SNS, leading to down-regulation of the SNS hyperactivity and its enhancing influence on microglial activation/proinflammatory functions and the magnitude of autoimmune response. The effects of propranolol are shown to be more prominent in male EAE animals, the phenomenon important as males (like men) are likely to develop clinically more severe disease. Thus, these findings could serve as a firm scientific background for formulation of a new sex-specific immune-intervention strategy for the early phases of MS (characterized by the SNS hyperactivity) exploiting anti-(neuro)inflammatory and immunomodulatory properties of propranolol and other relatively cheap and safe adrenergic drugs with similar therapeutic profile.


Assuntos
Encefalomielite Autoimune Experimental , Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Feminino , Masculino , Ratos , Animais , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Propranolol/uso terapêutico , Herpesvirus Humano 4 , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Norepinefrina , Receptores Adrenérgicos/uso terapêutico , Microglia
3.
Cell Mol Neurobiol ; 43(3): 1237-1265, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35798933

RESUMO

Our previous studies showed more severe experimental autoimmune encephalomyelitis (EAE) in male compared with female adult rats, and moderating effect of propranolol-induced ß-adrenoceptor blockade on EAE in females, the effect associated with transcriptional stimulation of Nrf2/HO-1 axis in spinal cord microglia. This study examined putative sexual dimorphism in propranolol action on EAE severity. Propranolol treatment beginning from the onset of clinical EAE mitigated EAE severity in rats of both sexes, but to a greater extent in males exhibiting higher noradrenaline levels and myeloid cell ß2-adrenoceptor expression in spinal cord. This correlated with more prominent stimulatory effects of propranolol not only on CX3CL1/CX3CR1/Nrf2/HO-1 cascade, but also on Stat3/Socs3 signaling axis in spinal cord microglia/myeloid cells (mirrored in the decreased Stat3 and the increased Socs3 expression) from male rats compared with their female counterparts. Propranolol diminished the frequency of activated cells among microglia, increased their phagocyting/endocyting capacity, and shifted cytokine secretory profile of microglia/blood-borne myeloid cells towards an anti-inflammatory/neuroprotective phenotype. Additionally, it downregulated the expression of chemokines (CCL2, CCL19/21) driving T-cell/monocyte trafficking into spinal cord. Consequently, in propranolol-treated rats fewer activated CD4+ T cells and IL-17+ T cells, including CD4+IL17+ cells coexpressing IFN-γ/GM-CSF, were recovered from spinal cord of propranolol-treated rats compared with sex-matched saline-injected controls. All the effects of propranolol were more prominent in males. The study as a whole disclosed that sexual dimorphism in multiple molecular mechanisms implicated in EAE development may be responsible for greater severity of EAE in male rats and sexually dimorphic action of substances affecting them. Propranolol moderated EAE severity more effectively in male rats, exhibiting greater spinal cord noradrenaline (NA) levels and myeloid cell ß2-adrenoceptor (ß2-AR) expression than females. Propranolol affected CX3CR1/Nrf2/HO-1 and Stat3/Socs3 signaling axes in myeloid cells, favored their anti-inflammatory/neuroprotective phenotype and, consequently, reduced Th cell reactivation and differentiation into highly pathogenic IL-17/IFN-γ/GM-CSF-producing cells.


Assuntos
Encefalomielite Autoimune Experimental , Ratos , Feminino , Masculino , Animais , Encefalomielite Autoimune Experimental/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-17/metabolismo , Propranolol , Doenças Neuroinflamatórias , Caracteres Sexuais , Fator 2 Relacionado a NF-E2/metabolismo , Medula Espinal/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Norepinefrina , Receptores Adrenérgicos/metabolismo
4.
Exp Gerontol ; 171: 112009, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334894

RESUMO

The study was aimed to examine putative contribution of thymic involution to ageing-associated increase in susceptibility of Albino Oxford (AO) rats to the development of clinical EAE, and vice versa influence of the disease on the progression of thymic involution. To this end we examined (i) the parameters of thymocyte negative selection efficacy, the thymic generation of CD4+CD25+Foxp3+ T regulatory cells (Tregs) and thymic capacity to instruct/predetermine IL-17-producing T-cell differentiation, and thymopietic efficacy-associated accumulation of "inflammescent" cytotoxic CD28- T cells in the periphery, and (ii) the key underlying mechanisms in young and old non-immunised AO rats and their counterparts immunised for EAE (on the 16th day post-immunisation when the disease in old rats reached the plateau) using flow cytometry analysis and/or RT-qPCR. It was found that thymic involution impairs: (i) the efficacy of negative selection (by affecting thymocyte expression of CD90, negative regulator of selection threshold and the expression of thymic stromal cell integrity factors) and (ii) Treg generation (by diminishing expression of cytokines supporting their differentiation/maturation). Additionally, the results suggest that thymic involution facilitates CD8+ T-cell differentiation into IL-17-producing cells (previously linked to the development of clinical EAE in old AO rats). Furthermore, they confirmed that ageing-related decrease in thymic T-cell output (as indicated by diminished frequency of recent thymic emigrants in peripheral blood) resulted in the accumulation of CD28- T cells in peripheral blood and, upon immunisation, in the target organ. On the other hand, the development of EAE (most likely by increasing circulatory levels of proinflammatory cytokines) contributed to the decline in thymic output of T cells, including Tregs, and thereby to the progression/maintenance of clinical EAE. Thus, in AO rats thymic involution via multi-layered mechanisms may favour the development of clinically manifested autoimmunity, which, in turn, precipitates the thymus atrophy.


Assuntos
Interleucina-17 , Timo , Ratos , Animais , Linfócitos T Reguladores , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Citocinas/metabolismo
5.
Immunol Lett ; 239: 42-59, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34418487

RESUMO

The incidence of multiple sclerosis (MS) and susceptibility of animals to experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, decrease with aging. Generally, autoimmune diseases develop as the ultimate outcome of an imbalance between damaging immune responses against self and regulatory immune responses (keeping the former under control). Thus, in this review the age-related changes possibly underlying this balance were discussed. Specifically, considering the central role of T cells in MS/EAE, the impact of aging on overall functional capacity (reflecting both overall count and individual functional cell properties) of self-reactive conventional T cells (Tcons) and FoxP3+ regulatory T cells (Tregs), as the most potent immunoregulatory/suppressive cells, was analyzed, as well. The analysis encompasses three distinct compartments: thymus (the primary lymphoid organ responsible for the elimination of self-reactive T cells - negative selection and the generation of Tregs, compensating for imperfections of the negative selection), peripheral blood/lymphoid tissues ("afferent" compartment), and brain/spinal cord tissues ("target" compartment). Given that the incidence of MS and susceptibility of animals to EAE are greater in women/females than in age-matched men/males, sex as independent variable was also considered. In conclusion, with aging, sex-specific alterations in the balance of self-reactive Tcons/Tregs are likely to occur not only in the thymus/"afferent" compartment, but also in the "target" compartment, reflecting multifaceted changes in both T-cell types. Their in depth understanding is important not only for envisaging effects of aging, but also for designing interventions to slow-down aging without any adverse effect on incidence of autoimmune diseases.


Assuntos
Envelhecimento/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Fatores Etários , Idoso , Animais , Suscetibilidade a Doenças/imunologia , Encefalomielite Autoimune Experimental/epidemiologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/patologia , Prevalência , Ratos , Fatores de Risco , Fatores Sexuais , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Timo/crescimento & desenvolvimento , Timo/imunologia
6.
Exp Gerontol ; 142: 111140, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33129930

RESUMO

The study examined the influence of sex on the alterations occurring with ageing in rat lymph node (LN) T cell compartment. In female and male rats the decrease in LN T cell counts was followed by a shift in CD4+/CD8+ T cell ratio towards CD8+ T cells, which was more prominent in males than in females. With ageing, in both major LN T cell subpopulations naïve (recent thymic emigrants and mature naïve cells) to memory/activated T cell ratio shifted to the side of memory/activated cells in female, and particularly in male rats. The frequency of regulatory CD25+Foxp3+ cells increased among LN CD4+/CD8+ T cells with ageing, reflecting, at least partly, an enhanced conversion of effector T cells into regulatory cells. This was also more prominent in male rats. The more prounounced increase in LN oxidative damage and the expression levels of proinflammatory cytokines in male rats with ageing, most likely contributed to the greater frequency of proinflammatory, replicatively senescent CD28- cells expressing CD11b (innate cell marker), among T cells of old male rats compared with age-matched females. The increase in LN oxidation/proinflammatory state with ageing was also consistent with the accumulation of exhausted PD-1high cells among T lymphocytes, particularly prominent among CD8+ T cells from male rats. Finally, by calculating a summary score for the key ageing-relevant parameters (an ageing index), a faster development of the deleterious changes in the T cell compartment occurring with ageing was confirmed in male rat LNs. Additionally, the study pointed to indices of LN T cell compartment ageing which correlate with those in peripheral blood.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Envelhecimento , Animais , Feminino , Linfonodos , Contagem de Linfócitos , Masculino , Ratos
7.
Inflammation ; 43(6): 2312-2331, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32857321

RESUMO

Monocytes' plasticity has an important role in the development of rheumatoid arthritis (RA), an autoimmune disease exhibiting greater prevalence in women. Contribution of this phenomenon to sex bias in RA severity was investigated in rat collagen-induced arthritis (CIA) model of RA. The greater severity of CIA in females (exhibiting signs of bone resorption) was accompanied by the higher blood level of advanced oxidation protein products and a more pro-oxidant profile. Consistently, in females, the greater density of giant multinuclear cells (monocytes/macrophages and osteoclasts) in inflamed joint tissue was found. This correlated with the higher frequencies of CCR2- and CX3CR1- expressing cells (precursors of inflammatory monocytes/macrophages and osteoclasts) among CD11b+ splenocytes. This in conjunction with the enhanced migratory capacity of CD11b+ monocytic cells in females compared with males could be linked with the higher frequencies of CCR2+CX3CR1-CD43lowCD11b+ and CCR2-CX3CR1+CD43hiCD11b+ cells (corresponding to "classical" and "non-classical" monocytes, respectively) and the greater density of CD68+ cells (monocytes/macrophages and osteoclast precursors/osteoclasts) in blood and inflamed paws from female rats, respectively. Consistently, the higher levels of GM-CSF, TNF-α and IL-6, IL-1ß (driving Th17 cell differentiation), and IL-17 followed by the lower level of IL-10 were measured in inflamed paw cultures from female compared with male rats. To the greater IL-17 production (associated with enhanced monocyte immigration and differentiation into osteoclasts) most likely contributed augmented Th17 cell generation in the lymph nodes draining arthritic joints from female compared with male rats. Overall, the study suggests the sex-specific contribution of monocytic lineage cells to CIA, and possibly RA development.


Assuntos
Artrite Experimental/metabolismo , Linhagem da Célula , Colágeno/efeitos adversos , Monócitos/metabolismo , Animais , Antioxidantes/metabolismo , Artrite Experimental/induzido quimicamente , Adesão Celular , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Inflamação , Macrófagos/metabolismo , Masculino , Osteoclastos/metabolismo , Oxidantes/metabolismo , Fagocitose , Ratos , Fatores Sexuais , Espectrofotometria
8.
Sci Rep ; 10(1): 1214, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988383

RESUMO

The study examined germinal centre (GC) reaction in lymph nodes draining inflamed joints and adjacent tissues (dLNs) in male and female Dark Agouti rat collagen type II (CII)-induced arthritis (CIA) model of rheumatoid arthritis. Female rats exhibiting the greater susceptibility to CIA mounted stronger serum CII-specific IgG response than their male counterparts. This correlated with the higher frequency of GC B cells in female compared with male dLNs. Consistently, the frequency of activated/proliferating Ki-67+ cells among dLN B cells was higher in females than in males. This correlated with the shift in dLN T follicular regulatory (Tfr)/T follicular helper (Tfh) cell ratio towards Tfh cells in females, and greater densities of CD40L and CD40 on their dLN T and B cells, respectively. The higher Tfh cell frequency in females was consistent with the greater dLN expression of mRNA for IL-21/27, the key cytokines involved in Tfh cell generation and their help to B cells. Additionally, in CII-stimulated female rat dLN cell cultures IFN-γ/IL-4 production ratio was shifted towards IFN-γ. Consistently, the serum IgG2a(b)/IgG1 CII-specific antibody ratio was shifted towards an IgG2a(b) response in females. Thus, targeting T-/B-cell interactions should be considered in putative further sex-based translational pharmacology research.


Assuntos
Artrite Experimental/patologia , Linfócitos B/metabolismo , Fatores Sexuais , Animais , Artrite Experimental/sangue , Artrite Experimental/metabolismo , Linfócitos B/imunologia , Células Cultivadas , Colágeno Tipo II/imunologia , Colágeno Tipo II/metabolismo , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Linfonodos/metabolismo , Masculino , Ratos , Caracteres Sexuais , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
9.
Neurobiol Dis ; 134: 104665, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31689515

RESUMO

Sympathetic dysfunction is suggested to contribute to development of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) alike. Considering important role of microglia in development/resolution of neuroinflammation, contribution of noradrenaline, the key sympathetic end-point mediator, in modulation of microglial phenotypic and functional properties in rat EAE model was examined. The study showed that noradrenaline acting in neurocrine and autocrine/paracrine way might influence microglia during EAE. Propranolol treatment over the effector phase moderated EAE course. This was associated with the increased proportion of microglia expressing CX3CR1, the key molecule in their immunomodulatory/neuroprotective action, and upregulation of CX3CR1 downstream Nrf2 gene. This correlated with the increased heme oxygenase-1 (HO-1) expression and phagocytic capacity of microglia, and their phenotypic changes mirrored in increased proportion of CD163- and CD83-expressing cells. The enhanced HO-1 expression was linked with the decreased proportion of microglial cells expressing IL-1ß and IL-23, and possibly IL-6, followed by increased proportion of IL-10-expressing microglia, and downregulated MCP-1/CCL2 expression. Consistently, spinal cord infiltration with blood-borne myeloid and CD4+ T cells, as well as CD4+ T-cell reactivation/proliferation and differentiation into highly pathogenic IL-17+ cells co-producing IFN-γ and GM-CSF were decreased in propranolol-treated rats compared with saline-injected controls. The in vitro investigations of the effects of noradrenaline on microglia showed that noradrenaline through ß-adrenoceptor may influence Nrf2 expression also via CX3CR1-independent route. The study suggests ß-adrenoceptor-mediated neuroinflammation-promoting role of noradrenaline in EAE via modulation of microglial Nrf2 expression, and thereby forms the basis for further translational pharmacological research to improve multiple sclerosis therapy.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Encefalomielite Autoimune Experimental/imunologia , Microglia/efeitos dos fármacos , Propranolol/farmacologia , Medula Espinal/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Feminino , Microglia/imunologia , Ratos , Medula Espinal/imunologia
10.
Biogerontology ; 21(1): 83-107, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31646402

RESUMO

The study investigated influence of sex and age on splenic myeloid dendritic cells (DCs) from Dark Agouti rats. Freshly isolated DCs from young males exhibited less mature phenotype and greater endocytic capacity compared with those from age-matched females. Upon LPS stimulation in vitro they were less potent in stimulating allogeneic CD4+ cells in mixed leukocyte reaction (MLR), due to lower expression of MHC II, and greater NO and IL-10 production. In accordance with higher TGF-ß production, young male rat DCs were less potent in stimulating IL-17 production in MLR than those from young females. Irrespective of sex, endocytic capacity and responsiveness of DCs to LPS stimulation in culture, judging by their allostimulatory capacity in MLR decreased with age, reflecting decline in MHC II surface density followed by their greater NO production; the effects more prominent in females. Additionally, compared with LPS-stimulated DCs from young rats, those from sex-matched aged rats were more potent in stimulating IL-10 production in MLR, whereas capacity of DCs from aged female and male rats to stimulate IL-17 production remained unaltered and decreased, respectively. This reflected age-related shift in IL-6/TGF-ß production level ratio in LPS-stimulated DC cultures towards TGF-ß, and sex-specific age-related remodeling CD4+ cell cytokine pathways. Additionally, compared with LPS-stimulated DCs from young rats, those cells from sex-matched aged rats were less potent in stimulating IFN-γ production in MLR, the effect particularly prominent in MLRs encompassing male rat DCs. The study showed that stimulatory and polarizing capacity of DCs depends on rat sex and age.


Assuntos
Citocinas/metabolismo , Células Dendríticas/metabolismo , Baço/metabolismo , Fatores Etários , Animais , Linfócitos T CD4-Positivos , Diferenciação Celular , Células Cultivadas , Feminino , Teste de Cultura Mista de Linfócitos , Masculino , Ratos , Fatores Sexuais
11.
Immunol Res ; 67(2-3): 223-240, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31396845

RESUMO

Pharmacological blockade of α1-adrenoceptor is shown to influence development of experimental autoimmune encephalomyelitis (EAE), an IL-17-producing CD4+TCR+ (Th17) cell-mediated disease mimicking multiple sclerosis. Considering significance of CD4+ cell priming for the clinical outcome of EAE, the study examined α1-adrenoceptor-mediated influence of catecholamines, particularly those derived from draining lymph node (dLN) cells (as catecholamine supply from nerve fibers decreases with the initiation of autoimmune diseases) for CD4+ cell priming. The results confirmed diminishing effect of immunization on nerve fiber-derived noradrenaline supply and showed that antigen presenting and CD4+ cells synthesize catecholamines, while antigen presenting cells and only CD4+CD25+Foxp3+ regulatory T cells (Tregs) express α1-adrenoceptor. The analysis of influence of α1-adrenoceptor antagonist prazosin on the myelin basic protein (MBP)-stimulated CD4+ lymphocytes in dLN cell culture showed their diminished proliferation in the presence of prazosin. This was consistent with prazosin enhancing effect on Treg frequency and their Foxp3 expression in these cultures. The latter was associated with upregulation of TGF-ß expression. Additionally, prazosin decreased antigen presenting cell activation and affected their cytokine profile by diminishing the frequency of cells that produce Th17 polarizing cytokines (IL-1ß and IL-23) and increasing that of IL-10-producing cells. Consistently, the frequency of all IL-17A+ cells and those co-expressing GM-CSF within CD4+ lymphocytes was decreased in prazosin-supplemented MBP-stimulated dLN cell cultures. Collectively, the results indicated that dLN cell-derived catecholamines may influence EAE development by modulating interactions between distinct subtypes of CD4+ T cells and antigen presenting cells through α1-adrenoceptor and consequently CD4+ T cell priming.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Norepinefrina/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Imunização , Imunofenotipagem , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação Linfocitária/genética , Masculino , Ratos , Receptores Adrenérgicos alfa 1/genética , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fator de Crescimento Transformador beta/metabolismo
12.
Biogerontology ; 20(4): 545-569, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31119497

RESUMO

The study investigated mechanisms underlying sex differences in thymic involution in Dark Agouti rats. Adverse effects of aging on thymus were more pronounced in males than in females. Thymi from old males exhibited more prominent: (i) fibro-adipose degeneration which correlated with greater intensity of thymic oxidative stress and enhanced thymic TGF-ß and IL-6 expression and (ii) decline in thymopoiesis, as suggested by the number of the most mature CD4+CD8-/CD4-CD8+ single positive (SP) TCRαßhigh thymocytes. The greater accumulation of adipose tissue in old male thymus was linked with greater age-related increase in thymic expression of PPARγ and STAT3, a transcription factor regulating the expression of PPARγ downstream genes, in male than in female rats. In aged thymi of both sexes the early CD4-CD8- double negative (DN) stage of thymocyte development was affected, so relative accumulation of the least mature CD45RC+CD2- cells followed by decreased frequency of their DN and CD4+CD8+ double positive (DP) TCRαß- descendants was observed. Additionally, in old males, because of the increased thymic expression of Nur77, a nuclear receptor involved in negative selection, and decreased CD90 (a negative regulator of thymocyte selection threshold) MFI on DP TCRαßint thymocytes, less efficient positive/more efficient negative selection was found. Moreover, in male rats, thymocyte post-selection differentiation/maturation was skewed towards CD4-CD8+ SP TCRαßhigh cells compared with age-matched females, reflecting, at least partly, greater IL-15 expression in their thymi. The study indicated mechanisms underlying sex-based differences in age-related thymic changes and consequently necessity of sex-specific approaches in designing strategies to rejuvenate thymus.


Assuntos
Senescência Celular/fisiologia , Timo , Animais , Antígenos CD/classificação , Correlação de Dados , Fibrose , Inflamação , Interleucina-6/metabolismo , Estresse Oxidativo , PPAR gama/metabolismo , Ratos , Caracteres Sexuais , Timócitos/imunologia , Timócitos/metabolismo , Timo/imunologia , Timo/metabolismo , Timo/patologia , Fator de Crescimento Transformador beta/metabolismo
13.
Neuroimmunomodulation ; 26(3): 129-138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31132768

RESUMO

OBJECTIVE: We examined the effect of ß-adrenoceptor (AR) blockade in the preclinical phase of experimental autoimmune encephalomyelitis (EAE), the most commonly used model of multiple sclerosis, on the development of primary CD4+ T-cell responses in draining lymph nodes (dLNs). METHODS: CD11b+ cell migration to dLNs, CD4+ T-cell activation/proliferation, and IL-17+ CD4+ (Th17) cell numbers in dLN and spinal cord (SC) were examined in male and female Dark Agouti rats using flow cytometry analysis. RESULTS: Irrespective of sex, in propranolol-treated (PT) rats, migration of CD11b+ antigen-presenting cells from the site of immunization to dLNs was impaired compared with saline-treated controls and consequently the frequency of all CD11b+ cells in dLNs and activated cells among them, too. This correlated with decreased expression of CCL19/21 transcripts in dLNs. Consistently, the frequency of activated/proliferating cells among dLN CD4+ T cells was reduced in PT rats. Additionally, propranolol reduced the number of Th17 cells in dLNs and SC. Consistently, male and female PT rats exhibited a decreased incidence of EAE and prolonged duration of the asymptomatic disease phase. CONCLUSION: This study suggests that sympathetic dysregulation is involved in the outbreak of clinical EAE.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Propranolol/farmacologia , Animais , Linfócitos T CD4-Positivos/imunologia , Movimento Celular/efeitos dos fármacos , Encefalomielite Autoimune Experimental/patologia , Feminino , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Masculino , Ratos , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/patologia
14.
Cell Immunol ; 336: 48-57, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30600100

RESUMO

Males exhibit stronger sympathetic nervous system (SNS) activity, but weaker primary CD4+ T-cell (auto)immune responses. To test the role of catecholamines, major end-point SNS mediators, in this dimorphism, influence of propranolol (ß-adrenoceptor blocker) on mitogen/neuroantigen-stimulated CD4+ T cells from female and male EAE rat draining lymph node (dLN) cell cultures was examined. Male rat dLNs exhibited higher noradrenaline concentration and frequency of ß2-adrenoceptor-expressing CD4+ T lymphocytes and antigen presenting cells. Propranolol, irrespective of exogenous noradrenaline presence, more prominently augmented IL-2 production and proliferation of CD4+ lymphocytes in male than female rat dLN cell cultures. In neuroantigen-stimulated dLN cells of both sexes propranolol increased IL-1ß and IL-23/p19 expression and IL-17+ CD4+ cell frequency, but enhanced IL-17 production only in male rat CD4+ lymphocytes, thereby abrogating sexual dimorphism in IL-17 concentration observed in propranolol-free cultures. Thus, ß-adrenoceptor-mediated signalling may contribute to sex bias in rat IL-17-producing cell secretory capacity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Norepinefrina/fisiologia , Receptores Adrenérgicos beta/fisiologia , Caracteres Sexuais , Antagonistas Adrenérgicos beta/farmacologia , Animais , Feminino , Interleucina-17/análise , Ativação Linfocitária , Masculino , Proteína Básica da Mielina/farmacologia , Ratos
15.
Cent Eur J Immunol ; 44(4): 337-356, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32140045

RESUMO

Natural killer (NK) cells, influencing dendritic cell (DC)-mediated CD4+ lymphocyte priming in draining lymph nodes (dLNs) and controlling spinal cord (SC) infiltration with encephalitogenic CD4+T lymphocytes, modulate EAE (multiple sclerosis model). This study examined their putative contribution to age-related differences in EAE development in Dark Agouti (DA) (exhibiting age-related decrease in EAE susceptibility) and Albino Oxford (AO) (becoming susceptible to EAE with aging) rats. Aging increased NK cell number in dLNs from rats of both strains. In AO rats, but not in DA ones, it also increased the numbers of IFN-γ-producing NK cells (important for DC activation) and activated/matured DCs, thereby increasing activated/matured DC/conventional Foxp3-CD4+ cell ratio and activated CD25+Foxp3-CD4+ cell number. Aging in DA rats diminished activated/matured DC/conventional Foxp3-CD4+ cell ratio and activated Foxp3-CD4+ cell number. However, MBP-stimulated CD4+ cell proliferation did not differ in dLN cell cultures from young and aged AO rats (as more favorable activated/matured DC/Foxp3-CD4+ cell ratio was abrogated by lower intrinsic CD4+ cell proliferative capacity and a greater regulatory CD25+Foxp3+CD4+ lymphocyte frequency), but was lower in those from aged compared with young DA rats. At SC level, aging shifted Foxp3-CD4+/cytotoxic CX3CR1+ NK cell ratio towards the former in AO rats, so it was less favorable in aged AO rats exhibiting prolonged neurological deficit compared with their DA counterparts. The study showed strain and age differences in number of IFN-γ-producing NK cells in EAE rat dLNs, and suggested that their pathogenetic relevance depends on frequency and/or activity of other cells involved in CD4+ T cell (auto)immune response.

16.
Artigo em Inglês | MEDLINE | ID: mdl-31993021

RESUMO

The role of stress effector systems in the initiation and progression of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, has strongly been suggested. To corroborate this notion, alterations in activity of the sympathoadrenal and sympathoneural axes of sympathoadrenal system (a major communication pathway between the central nervous system and the immune system), mirrored in altered release of their end-point mediators (adrenaline and noradrenaline, respectively), are shown to precede (in MS) and/or occur during development of MS and EAE in response to immune cell activation (in early phase of disease) and disease-related damage of sympathoadrenal system neurons and their projections (in late phase of disease). To add to the complexity, innate immunity cells and T-lymphocytes synthesize noradrenaline that may be implicated in a local autocrine/paracrine self-amplifying feed-forward loop to enhance myeloid-cell synthesis of proinflammatory cytokines and inflammatory injury. Furthermore, experimental manipulations targeting noradrenaline/adrenaline action are shown to influence clinical outcome of EAE, in a disease phase-specific manner. This is partly related to the fact that virtually all types of cells involved in the instigation and progression of autoimmune inflammation and target tissue damage in EAE/MS express functional adrenoceptors. Although catecholamines exert majority of immunomodulatory effects through ß2-adrenoceptor, a role for α-adrenoceptors in EAE pathogenesis has also been indicated. In this review, we summarize all aforementioned aspects of immunopathogenetic action of catecholamines in EAE/MS as possibly important for designing new strategies targeting their action to prevent/mitigate autoimmune neuroinflammation and tissue damage.

17.
Brain Behav Immun ; 76: 198-214, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30476564

RESUMO

Collagen type II-induced arthritis (CIA) in Dark Agouti rats, a model of rheumatoid arthritis (RA), reproduces sexual dimorphism in the incidence and severity of the human disease. Th17 cells are central in the induction/propagation of autoimmune inflammation in CIA and RA. To assess mechanisms underlying this dimorphism in CIA rats, in lymph nodes draining inflamed joints and adjacent tissues (dLNs) from CIA rats of both sexes Th17/CD25+Foxp3+CD4+ T-regulatory cell (Treg) ratio, Th17 cell redifferentiation in functionally distinct subsets and Treg transdifferentiation into IL-17-producing cells (exTregs) were examined. In female rats (developing more severe CIA than their male counterparts) the higher frequency of all Th17 cells (reflecting partly their greater proliferation), followed by the higher frequency of highly pathogenic IFN-γ/GM-CSF-co-producing cells, but lower frequency of less pathogenic/immunoregulatory IL-10-producing cells among them was found. Additionally, compared with male rats, in female rats the lower frequency of Tregs was observed. Moreover, Tregs from female rats exhibited diminished proliferative and suppressive capacity (judging by PD-1 expression) and enhanced conversion into IL-17-producing cells. Given that TGF-ß concentration was comparable in collagen-type II-stimulated dLN cell cultures from female and male rats, the shift in Th17/Treg ratio followed by augmented Th17 cell redifferentiation into IFN-γ/GM-CSF-co-producing cells and Treg transdifferentiation into IL-17-producing cells in female rats was associated with increased concentration of IL-6 in female rat dLN cell cultures, and the higher frequency of IL-1ß- and IL-23-producing cells among their dLN cells. The lower frequency of IL-10-producing B cells, presumably B regulatory cells (Bregs) could also contribute to the shift in Th17/Treg ratio in female rat compared with male rat dLNs. Consistently, the lower expression of IL-35 (the cytokine promoting Treg expansion directly and indirectly, by favoring Breg expansion and conversion into IL-10/IL-35-producing cells) in female rat dLN cells was detected. Thus, the study identified putative cellular and molecular substrates of the sexual dimorphism in the immunopathogenesis and clinical outcome of CIA and suggested mechanisms to be targeted in females to improve control of Th17 response, and consequently clinical outcome of CIA, and possibly RA.


Assuntos
Artrite Experimental/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Artrite Reumatoide/imunologia , Colágeno/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-17/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Masculino , Ratos , Ratos Endogâmicos , Caracteres Sexuais , Fatores Sexuais , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo
18.
PLoS One ; 13(8): e0201848, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30086167

RESUMO

An accumulating body of evidence suggests that development of autoimmune pathologies leads to thymic dysfunction and changes in peripheral T-cell compartment, which, in turn, perpetuate their pathogenesis. To test this hypothesis, thymocyte differentiation/maturation in rats susceptible (Dark Agouti, DA) and relatively resistant (Albino Oxford, AO) to experimental autoimmune encephalomyelitis (EAE) induction was examined. Irrespective of strain, immunization for EAE (i) increased the circulating levels of IL-6, a cytokine causally linked with thymic atrophy, and (ii) led to thymic atrophy reflecting partly enhanced thymocyte apoptosis associated with downregulated thymic IL-7 expression. Additionally, immunization diminished the expression of Thy-1, a negative regulator of TCRαß-mediated signaling and activation thresholds, on CD4+CD8+ TCRαßlo/hi thymocytes undergoing selection and thereby impaired thymocyte selection/survival. This diminished the generation of mature CD4+ and CD8+ single positive TCRαßhi thymocytes and, consequently, CD4+ and CD8+ recent thymic emigrants. In immunized rats, thymic differentiation of natural regulatory CD4+Foxp3+CD25+ T cells (nTregs) was particularly affected reflecting a diminished expression of IL-7, IL-2 and IL-15. The decline in the overall thymic T-cell output and nTreg generation was more pronounced in DA than AO rats. Additionally, differently from immunized AO rats, in DA ones the frequency of CD28- cells secreting cytolytic enzymes within peripheral blood CD4+ T lymphocytes increased, as a consequence of thymic atrophy-related replicative stress (mirrored in CD4+ cell memory pool expansion and p16INK4a accumulation). The higher circulating level of TNF-α in DA compared with AO rats could also contribute to this difference. Consistently, higher frequency of cytolytic CD4+ granzyme B+ cells (associated with greater tissue damage) was found in spinal cord of immunized DA rats compared with their AO counterparts. In conclusion, the study indicated that strain differences in immunization-induced changes in thymopoiesis and peripheral CD4+CD28- T-cell generation could contribute to rat strain-specific clinical outcomes of immunization for EAE.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Imunização , Especificidade da Espécie , Timo/imunologia , Timo/patologia , Animais , Apoptose/imunologia , Atrofia , Proliferação de Células , Feminino , Distribuição Aleatória , Ratos , Timócitos/imunologia , Timócitos/patologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-29441042

RESUMO

The thymus is sexually differentiated organ providing microenvironment for T-cell precursor differentiation/maturation in the major histocompatibility complex-restricted self-tolerant T cells. With increasing age, the thymus undergoes involution leading to the decline in efficacy of thymopoiesis. Noradrenaline from thymic nerve fibers and "(nor)adrenergic" cells is involved in the regulation of thymopoiesis. In rodents, noradrenaline concentration in thymus and adrenoceptor (AR) expression on thymic cells depend on sex and age. These differences are suggested to be implicated in the development of sexual diergism and the age-related decline in thymopoiesis. The programming of both thymic sexual differentiation and its involution occurs during the critical early perinatal period and may be reprogrammed during peripubertal development. The thymic (re)programming is critically dependent on circulating levels of gonadal steroids. Although the underlying molecular mechanisms have not yet been elucidated fully, it is assumed that the gonadal steroid action during the critical perinatal/peripubertal developmental periods leads to long-lasting changes in the efficacy of thymopoiesis partly through (re)programming of "(nor)adrenergic" cell networks and AR expression on thymic cells.

20.
Exp Gerontol ; 101: 37-53, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128575

RESUMO

The study investigated strain specificities in age-related differences in CD8+ T cell- and microglial cell-mediated mechanisms implicated in induction/perpetuation and/or control of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in Albino Oxford (AO) and Dark Agouti (DA) rats exhibiting age-related changes in the susceptibility to EAE in the opposite direction (increase in relatively resistant AO rats vs decrease in DA rats). In the inductive phase of EAE, the greater number of fully differentiated effector CD8+ T lymphocytes was found in draining lymph nodes (dLNs) from aged rats of both strains than in strain-matched young rats, but this was particularly prominent in AO rats, which exhibited milder EAE of prolonged duration compared with their DA counterparts. Consistently, dLN IFN-γ+ and IL-17+ CD8+ T cell counts were greater in aged AO than in DA rats. Additionally, the magnitudes of myelin basic protein (MBP)-induced rise in the frequency of IFN-γ+ and IL-17+ CD8+ T cells (providing important help to neuroantigen-specific CD4+ T cells in EAE models characterized by clinically mild disease) were greater in dLN cell cultures from aged AO rats. Consistently, the magnitudes of MBP-induced rise in the frequency of both IFN-γ+ and IL-17+ CD8+ T cells were greater in spinal cord mononuclear cell cultures from aged AO rats compared with their DA counterparts. Besides, with aging CD4+CD25+Foxp3+/CD8+CD25+Foxp3+ regulatory T cell ratio changed in spinal cord in the opposite direction. Consequently, in aged AO rats it was shifted towards CD8+CD25+Foxp3+ regulatory T cells (exhibiting lower suppressive capacity) when compared with DA rats. Moreover, the frequency of CX3CR1+ cells among microglia changed with aging and the disease development. In aged rats, in the effector phase of EAE it was lower in AO than in DA rats. This was accompanied by higher frequency of cells expressing IL-1ß (whose down-regulation is central for CX3CR1-mediated neuroprotection), but lower that of phagocyting cells among microglia from aged AO compared their DA counterparts. The study indicates the control points linked with strain differences in age-related changes in EAE pathogenesis.


Assuntos
Envelhecimento/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptor 1 de Quimiocina CX3C/imunologia , Encefalomielite Autoimune Experimental/imunologia , Microglia/imunologia , Neuroproteção/imunologia , Medula Espinal , Animais , Interferon gama/imunologia , Interleucina-17/imunologia , Contagem de Leucócitos/métodos , Linfonodos/imunologia , Linfonodos/patologia , Ratos , Medula Espinal/imunologia , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...