Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Sci ; 339: 111951, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072331

RESUMO

Sudden Death Syndrome (SDS) caused by Fusarium tucumaniae is a significant threat to soybean production in Argentina. This study assessed the susceptibility of SY 3 × 7 and SPS 4 × 4 soybeans cultivars to F. tucumaniae and studied changes in root isoflavone levels after infection. Additionally, the biocontrol potential of plant-growth promoting rhizobacteria (PGPR) against SDS was also examined. Our results demonstrated that the SY 3 × 7 cultivar exhibited higher disease severity and total fresh weight loss than SPS 4 × 4. Both cultivars showed induction of daidzein, glycitein, and genistein in response to infection, with the partially resistant cultivar displaying significantly higher daidzein levels than the susceptible cultivar at 14 days post infection (dpi) (2.74 vs 2.17-fold), declining to a lesser extent at 23 dpi (0.94 vs 0.35-fold, respectively). However, daidzein was not able to inhibit F. tucumaniae growth in in vitro assays probably due to its conversion to an isoflavonoid phytoalexin which would ultimately be an effective fungal inhibitor. Furthermore, the PGPR bacterium Bacillus amyloliquefaciens BNM340 displayed antagonistic activity against F. tucumaniae and reduced SDS symptoms in infected plants. This study sheds light on the varying susceptibility of soybean cultivars to SDS, offers insights into isoflavone responses during infection, and demonstrates the potential of PGPR as a biocontrol strategy for SDS management, providing ways for disease control in soybean production.


Assuntos
Fusarium , Isoflavonas , Glycine max , Fusarium/fisiologia , Morte Súbita , Argentina , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Biotechnol Prog ; 40(1): e3393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37792408

RESUMO

Coffee is a crop of significant socioeconomic importance, and the reuse of agri-food by-products and biowaste has great potential across several industries. Coffee wastewater (CWW) is a valuable resource containing essential nutrients that can be utilized by Candida sorboxylosa for single-cell protein (SCP) production. This utilization contributes to mitigating the negative impacts of agro-industrial waste. The optimization of culture conditions using the design of experiments (DoE) technique is crucial in understanding the environmental factors influencing metabolite production. In our study, the DoE technique was employed to analyze culture conditions, including room temperature, pH 8.4, agitation at 200 rpm, a headspace of 60% (v/v), and an inoculum of 0.75 DO600nm over 28-h period. This approach resulted in a remarkable SCP yield of 64.4% and dry cell weight (DCW) of 2.26 g/L. It is noteworthy that there is no literature reporting SCP production under alkaline pH conditions in yeast. Interestingly, our work demonstrated that an alkaline pH of 8.4 significantly influenced SCP production by C. sorboxylosa. The DoE technique proved to be an efficient statistical tool for optimizing culture conditions, offering several advantages, such as: (i) conducting cultures at room temperature to minimize unnecessary energy consumption; (ii) reducing the incubation time from 46 to 28 h, thereby enhancing overall productivity; (iii) achieving 1.7-fold increase in SCP yield compared to previous basal production levels.


Assuntos
Candida , Coffea , Águas Residuárias , Café , Saccharomyces cerevisiae
3.
Bioengineering (Basel) ; 10(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37106618

RESUMO

Aeromonas caviae CHZ306, a marine-derived bacterium isolated from zooplankton, can use chitin (a polymer of a ß-(1,4)-linked N-acetyl-D-glucosamine) as a carbon source. The chitin is hydrolyzed by chitinolytic enzymes, namely endochitinases and exochitinases (chitobiosidase and N-acetyl-glucosaminidase). Indeed, the chitinolytic pathway is initiated by the coexpression of the enzymes endochitinase (EnCh) and chitobiosidase (ChB); however, few studies, including biotechnological production of these enzymes, have been reported, although chitosaccharide are helpful in several industries, such as cosmetics. This study demonstrates the potential to maximize the simultaneous EnCh and ChB production by nitrogen supplementation on culture media. Twelve different nitrogen supplementation sources (inorganic and organic) previously analyzed in elemental composition (carbon and nitrogen) were tested and evaluated in the Erlenmeyer flask culture of A. caviae CHZ306 for EnCh and ChB expression. None of the nutrients inhibited bacterial growth, and the maximum activity in both EnCh and ChB was observed at 12 h, using corn-steep solids and peptone A. Corn-steep solids and peptone A were then combined at three ratios (1:1, 1:2, and 2:1) to maximize the production. The high activities for EnCh (30.1 U.L-1) and ChB (21.3 U.L-1) were obtained with 2:1 corn-steep solids and peptone A, corresponding to more than 5- and 3-fold enhancement, respectively, compared to the control condition.

4.
Bioengineering (Basel) ; 9(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421095

RESUMO

Microbial proteases, especially aspartic proteases, are an essential group of enzymes produced from different microorganisms. Microbial proteases have several applications, mainly in the food, beverage, cosmetic, and pharmaceutical industries, due to their efficiency in the processing and in the manufacturing stages. The yeast Rhodotorula mucilaginosa CBMAI 1528 was isolated from the Antarctic environment and was previously reported to have higher extracellular aspartic protease production. In addition, advances in the operational conditions of bioreactors for enzyme production are important to reduce the gap associated with scaling-up processes. This is the first study that evaluates the influence of oxygen transference (kLa) on the protease production of R. mucilaginosa yeast. To that end, batch cultures were created in a stirred tank bioreactor using Sabouraud dextrose broth at 25 °C for 72 h under kLa values from 18 to 135 h-1. The results show that kLa (121 h-1) obtained at 500 rpm and 1.5 vvm plays an important role in protease production (124.9 U/mL) and productivity (6.784 U/L.h) as well as biomass (10.4 g/L), µmax (0.14 h-1) and Yx/s (0.484 g/g). In conclusion, R. mucilaginosa showed high yield production in aerobic culture with the efficiency of protease expression and secretion influenced by kLa. In this sense, our results could be used for further industrial investment.

5.
Bioengineering (Basel) ; 9(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36134961

RESUMO

Polyribosyl-ribitol-phosphate (PRP) from Haemophilus influenzae type b (Hib) is an active immunizing molecule used in the production of the vaccine against H. influenzae, and industrial production could contribute to satisfying a world demand especially in developing countries. In this sense, the aim of this study was to establish a scale-up process using the constant oxygen mass transfer coefficient (kLa) such as the criterion for production of PRP in three different sizes of bioreactor systems. Three different kLa values (24, 52 and 80 h-1) were evaluated in which the biological influence in a 1.5 L bioreactor and 52 h-1 was selected to scale-up the production process until a 75 L pilot-scale bioreactor was achieved. Finally, the fed-batch phase was started under a dissolved oxygen concentration (pO2) at 30% of the saturation in the 75 L bioreactor to avoid oxygen limitation; the performance of production presented high efficiency (9.0 g/L DCW-dry cell weight and 1.4 g/L PRP) in comparison with previous scale-up studies. The yields, productivity and kinetic behavior were similar in the three-size bioreactor systems in the batch mode indicating that kLa is possible to use for PRP production at large scales. This process operated under two stages and successfully produced DCW and PRP in the pilot scale and could be beneficial for future bioprocess operations that may lead to higher production and less operative cost.

8.
Bioengineering, v. 9, 415, ago. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4492

RESUMO

Polyribosyl-ribitol-phosphate (PRP) from Haemophilus influenzae type b (Hib) is an active immunizing molecule used in the production of the vaccine against H. influenzae, and industrial production could contribute to satisfying a world demand especially in developing countries. In this sense, the aim of this study was to establish a scale-up process using the constant oxygen mass transfer coefficient (kLa) such as the criterion for production of PRP in three different sizes of bioreactor systems. Three different kLa values (24, 52 and 80 h−1) were evaluated in which the biological influence in a 1.5 L bioreactor and 52 h−1 was selected to scale-up the production process until a 75 L pilot-scale bioreactor was achieved. Finally, the fed-batch phase was started under a dissolved oxygen concentration (pO2) at 30% of the saturation in the 75 L bioreactor to avoid oxygen limitation; the performance of production presented high efficiency (9.0 g/L DCW-dry cell weight and 1.4 g/L PRP) in comparison with previous scale-up studies. The yields, productivity and kinetic behavior were similar in the three-size bioreactor systems in the batch mode indicating that kLa is possible to use for PRP production at large scales. This process operated under two stages and successfully produced DCW and PRP in the pilot scale and could be beneficial for future bioprocess operations that may lead to higher production and less operative cost.

10.
Biotechnol Prog ; 37(3): e3003, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32281294

RESUMO

Aqueous biphasic systems (ABSs) are an interesting alternative for separating industrial enzymes due to easy scale-up and low operational cost. The proteases of Pseudomonas sp. M211 were purified through ABS platforms formed by polyethylene glycol (PEG) and citrate buffer salt. Two experimental designs 23 + 4 were performed to evaluate the following parameters: molar mass of PEG (MPEG ), concentration of PEG (CPEG ), concentration of citrate buffer (CCit ), and pH. The partition coefficient (K), activity yield (Y), and purification factor (PF) were the responses analyzed. The best purification performance was obtained with the system composed of MPEG  = 10,000 g/mol, CPEG  = 22 wt%, CCit  = 12 wt%, pH = 8.0; the responses obtained were K = 4.9, Y = 84.5%, PF = 15.1, and tie-line length = 52.74%. The purified proteases of Pseudomonas sp. (PPP) were used to obtain hydrolysates of Lupinus mutabilis (Peruvian lupin cultivar) seed protein in comparison with the commercial protease Alcalase® 2.4L. A strong correlation between hydrolysis degree and radical scavenging activity was observed, and the highest antioxidant activity was obtained with Alcalase® (1.40 and 3.47 µmol Trolox equivalent/mg protein, for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and oxygen radical absorbance capacity, respectively) compared with PPP (0.55 and 1.03 µmol Trolox/mg protein). Nevertheless, the IC50 values were lower than those often observed for antioxidant hydrolysates from plant proteins. PEG/citrate buffer system is valuable to purify Pseudomonas proteases from the fermented broth, and the purified protease could be promising to produce antioxidant protein hydrolysates.


Assuntos
Proteínas de Bactérias , Fracionamento Químico/métodos , Peptídeo Hidrolases , Hidrolisados de Proteína , Pseudomonas/enzimologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Lupinus/química , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Polietilenoglicóis/química , Hidrolisados de Proteína/análise , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo
11.
Biotechnol Rep (Amst) ; 28: e00546, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33204658

RESUMO

Enzymes from cold-adapted microorganisms are of high interest to industries due to their high activity at low and mild temperatures, which makes them suitable for their use in several processes that either require a supply of exogenous energy or involve the use of heat labile products. In this work, the protease production by the strain Rhodotorula mucilaginosa CBMAI 1528, previously isolated from the Antarctic continent, was optimized, and the purified enzyme analyzed. It was found that protease production was dependent on culture medium composition and growth temperature, being 20 °C and a culture medium containing both glucose and casein peptone (20 and 10 g/L, respectively) the optimal growing conditions in batch as well as in bioreactor. Moreover, mass spectrometry analysis revealed that the enzyme under study has a 100 % sequence identity with the deduced amino acid sequence of a putative aspartic protease from Rhodotorula sp. JG-1b (protein ID: KWU42276.1). This result was confirmed by the decrease of 95 % proteolytic activity by pepstatin A, a specific inhibitor of aspartic proteases. We propose that the enzyme reported here could be Rodothorulapepsin, a protein characterized in 1972 that did not have an associated sequence to date and has been classified as an orphan enzyme.

12.
Artigo em Inglês | MEDLINE | ID: mdl-30800657

RESUMO

L-Asparaginase (ASNase) is used in the treatment of acute lymphoblastic leukemia, being produced and commercialized only from bacterial sources. Alternative Saccharomyces cerevisiae ASNase II coded by the ASP3 gene was biosynthesized by recombinant Pichia pastoris MUT s under the control of the AOX1 promoter, using different cultivation strategies. In particular, we applied multistage fed-batch cultivation divided in four distinct phases to produce ASNase II and determine the fermentation parameters, namely specific growth rate, biomass yield, and enzyme activity. Cultivation of recombinant P. pastoris under favorable conditions in a modified defined medium ensured a dry biomass concentration of 31 gdcw.L-1 during glycerol batch phase, corresponding to a biomass yield of 0.77 gdcw.g glycerol - 1 and a specific growth rate of 0.21 h-1. After 12 h of glycerol feeding under limiting conditions, cell concentration achieved 65 gdcw.L-1 while ethanol concentration was very low. During the phase of methanol induction, biomass concentration achieved 91 gdcw.L-1, periplasmic specific enzyme activity 37.1 U.g dcw - 1 , volumetric enzyme activity 3,315 U.L-1, overall enzyme volumetric productivity 31 U.L-1.h-1, while the specific growth rate fell to 0.039 h-1. Our results showed that the best strategy employed for the ASNase II production was using glycerol fed-batch phase with pseudo exponential feeding plus induction with continuous methanol feeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...