Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 113(19): 193001, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25415902

RESUMO

We observe the direct excitation of pairs of Cs atoms from the ground state to molecular states correlating asymptotically to nsn'f asymptotes. The molecular resonances are interpreted as originating from the dipole-quadrupole interaction between the nsn'f pair states and close-by npnp asymptotes (22≤n≤32). This interpretation is supported by Stark spectroscopy of the pair states and a detailed modeling of the interaction potentials. The dipole-quadrupole interaction mixes electronic states of opposite parity and, thus, requires a coupling between electronic and nuclear motion to conserve the total parity of the system. This non-Born-Oppenheimer coupling is facilitated by the near-degeneracy of even- and odd-L partial waves in the atom-atom scattering which have opposite parity.

2.
Phys Rev Lett ; 109(5): 053002, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-23006168

RESUMO

The dipole blockade of Rydberg excitations is a hallmark of the strong interactions between atoms in these high-lying quantum states [M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010); D. Comparat and P. Pillet, J. Opt. Soc. Am. B 27, A208 (2010)]. One of the consequences of the dipole blockade is the suppression of fluctuations in the counting statistics of Rydberg excitations, of which some evidence has been found in previous experiments. Here we present experimental results on the dynamics and the counting statistics of Rydberg excitations of ultracold rubidium atoms both on and off resonance, which exhibit sub- and super-Poissonian counting statistics, respectively. We compare our results with numerical simulations using a novel theoretical model based on Dicke states of Rydberg atoms including dipole-dipole interactions, finding good agreement between experiment and theory.

3.
Phys Rev Lett ; 104(13): 133003, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20481882

RESUMO

We have induced adiabatic transitions in pairs of frozen Rydberg sodium atoms of a supersonic beam. The diatomic ns+ns-->np+(n-1)p transition takes place in a time-dependent electric field and originates from the adiabatic change of the internal state of the pair induced by the dipole-dipole interaction. This is experimentally achieved by sweeping an electric field across the energy degeneracy ns ns-np(n-1)p. Our results fully agree with a two-level Landau-Zener model in the diatom system.

4.
Faraday Discuss ; 142: 257-70; discussion 319-34, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20151547

RESUMO

By using broadband lasers, we demonstrate the possibilities for control of cold molecules formed via photoassociation. Firstly, we present a detection REMPI scheme (M. Viteau et al., Phys. Rev. A, 2009, 79, 021402) to systematically investigate the mechanisms of formation of ultracold Cs2 molecules in deeply bound levels of their electronic ground state X1sigma(g)+. This broadband detection scheme could be generalized to other molecular species. Then we report a vibrational cooling technique (M. Viteau et al., Science, 2008, 321, 232) through optical pumping obtained by using a shaped mode locked femtosecond laser. The broadband femtosecond laser excites the molecules electronically, leading to a redistribution of the vibrational population in the ground state via a few absorption-spontaneous emission cycles. By removing the laser frequencies corresponding to the excitation of the v = 0 level, we realize a dark state for the so-shaped femtosecond laser, leading, with the successive laser pulses, to an accumulation of the molecules in the v = 0 level, ie. a laser cooling of the vibration. The simulation of the vibrational laser cooling allows us to characterize the criteria to extend the mechanism to other molecular species (R. V. Krems, Int. Rev. Phys. Chem., 2005, 24, 99). We finally discuss the generalization of the technique to laser cooling of the rotation of the molecule.

5.
Science ; 321(5886): 232-4, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18621665

RESUMO

The methods producing cold molecules from cold atoms tend to leave molecular ensembles with substantial residual internal energy. For instance, cesium molecules initially formed via photoassociation of cold cesium atoms are in several vibrational levels nu of the electronic ground state. We applied a broadband femtosecond laser that redistributes the vibrational population in the ground state via a few electronic excitation/spontaneous emission cycles. The laser pulses are shaped to remove the excitation frequency band of the nu = 0 level, preventing re-excitation from that state. We observed a fast and efficient accumulation ( approximately 70% of the initially detected molecules) in the lowest vibrational level, nu = 0, of the singlet electronic state. The validity of this incoherent depopulation pumping method is very general and opens exciting prospects for laser cooling and manipulation of molecules.

6.
Phys Rev Lett ; 99(7): 073002, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17930892

RESUMO

High resolution laser Stark excitation of np (60

7.
Phys Rev Lett ; 97(8): 083003, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-17026300

RESUMO

High resolution laser excitation of np Rydberg states of cesium atoms shows a dipole blockade at Förster resonances corresponding to the resonant dipole-dipole energy transfer of the np+np --> ns+(n+1)s reaction. The dipole-dipole interaction can be tuned on and off by the Stark effect, and such a process, observed for relatively low n(25-41), is promising for quantum gate devices. Both Penning ionization and saturation in the laser excitation can limit the range of observation of the dipole blockade.

8.
Phys Rev Lett ; 95(23): 233002, 2005 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-16384303

RESUMO

Coupling by the resonant dipole-dipole energy transfer between cold cesium Rydberg atoms is investigated using time-resolved narrow-band deexcitation spectroscopy. This technique combines the advantage of efficient Rydberg excitation with high-resolution spectroscopy at variable interaction times. Dipole-dipole interaction is observed spectroscopically as avoided level crossing. The coherent character of the process is linked to back and forth transfer in the np + np <--> ns + (n + 1)s reaction. Decoherence in the ensemble has two different origins: the atom motion induced by dipole-dipole interaction and the migration of the s-Rydberg excitation in the environment of p-Rydberg atoms.

9.
Phys Rev Lett ; 89(6): 063001, 2002 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12190579

RESUMO

We have realized a mixed atomic and molecular trap, constituted by a Cs vapor-cell magneto-optical trap and a quadrupolar magnetic C s(2) trap, using the same magnetic field gradient. We observed the trapping of 2x 10(5) molecules, formed and accumulated in the metastable a (3)Sigma(+ )(u) state at a temperature of 30+/-10 microK through a approximately 150 ms photoassociation process. The lifetime of the trapped molecular cloud limited by the Cs background gas pressure is on the order of 1 s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...