Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(21): 13851-9, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25801229

RESUMO

This study demonstrates solar driven oxidation of hydrazine hydrate and the simultaneous production of hydrogen and electricity in photoelectrochemical cells and photofuel cells, respectively, using a visible light active molybdenum doped BiVO4 photoelectrode. The developed photoelectrodes exhibited tremendous efficiency towards anodic oxidation of hydrous hydrazine with continuous and stable hydrogen evolution at the Pt cathode under benign pH and zero bias conditions. Significantly, the photofuel cell containing hydrazine hydrate fuel has generated electricity with a high open circuit potential of 0.8 V. The presence of bicarbonate ions in the electrolyte has played a significant role in enhancing the kinetics of photoelectrochemical oxidation of hydrazine and improved the hydrogen and electricity generation efficiency thus avoiding the integration of an oxidation electrocatalyst. In addition, molybdenum doped BiVO4 as a possible photoelectrochemical hydrazine sensor has been investigated and the electrode photocurrent was found to be linearly dependent on the concentration of the hydrazine hydrate in the range of 20-90 mM with a correlation coefficient of 0.9936.


Assuntos
Bismuto/química , Fontes de Energia Elétrica , Hidrazinas/química , Hidrogênio/química , Molibdênio/química , Vanadatos/química , Eletricidade , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Luz , Oxirredução , Processos Fotoquímicos , Platina/química
2.
Phys Chem Chem Phys ; 15(35): 14723-8, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23900229

RESUMO

We report the design, synthesis and photoelectrochemical characterization of cobalt phosphate (Co-Pi) oxygen evolution catalyst modified heterojunction photoelectrodes consisting of one-dimensional WO3 nanorods (1D-WO3) and highly porous BiVO4 layers. The 1D-WO3 nanorods were prepared by the decomposition of the tetrabutylammonium decatungstate precursor in the presence of poly(ethylene glycol) as a binding agent. The porous BiVO4 layers were spray deposited using a surfactant assisted metal-organic decomposition method. The Co-Pi oxygen evolution catalyst was deposited onto the BiVO4/1D-WO3/FTO heterojunction electrode using a photoassisted electrodeposition method. The Co-Pi catalyst modified heterojunction electrodes exhibited a sustained enhancement in the photocurrent compared to the unmodified BiVO4/1D-WO3/FTO heterojunction electrodes. The improved photoelectrochemical properties profited from the enhanced charge carrier separation achieved through the integration of highly porous BiVO4 layers on top of 1D-WO3 nanorods and from the superior kinetics due to the presence of the Co-Pi oxygen evolution catalyst on top of BiVO4/1D-WO3/FTO heterojunction electrodes.

3.
Phys Chem Chem Phys ; 15(9): 3273-8, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23348367

RESUMO

BiVO(4)/CuWO(4) heterojunction electrodes were prepared using spray deposition of a highly porous bismuth vanadate film onto the surface of an electrodeposited three dimensional network connected copper tungstate. Bilayer BiVO(4)/CuWO(4)/fluorine doped tin oxide glass (FTO) electrodes demonstrated higher photocurrent magnitudes than either with BiVO(4)/FTO or CuWO(4)/FTO electrodes in 1.0 M Na(2)SO(4) electrolyte buffered at pH 7. The photocurrent is enhanced by the formation of the heterojunction that aids charge carrier collection brought about by the band edge offsets. When the pH 7 buffered electrolytes contained 1.0 M bicarbonate is employed instead of 1.0 M sulfate, the charge transfer resistance was decreased. This led to nearly 1.8 times the photocurrent density at 1.0 V vs. Ag/AgCl. The photocurrent was stable over 24 hours in bicarbonate electrolyte.

4.
Phys Chem Chem Phys ; 14(19): 7032-9, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22466621

RESUMO

A facile and simple procedure for the synthesis of semi-transparent and porous SiO2-BiVO4 electrodes is reported. The method involves a surfactant assisted metal-organic decomposition at 500 °C. An earth abundant oxygen evolution catalyst (OEC), cobalt phosphate (Co-Pi), has been used to modify the SiO2-BiVO4 electrode by electrodeposition (ED) and photoassisted electrodeposition (PED) methods. Modified electrodes by these two methods have been examined for light induced water oxidation and compared to the unmodified SiO2-BiVO4 electrodes by various photoelectrochemical techniques. The PED method was a more effective method of OEC preparation than the ED method as evidenced by an increased photocurrent magnitude during photocurrent-potential (I-V) characterizations. Electrode surfaces catalyzed by PED exhibited a very large cathodic shift (∼420 mV) in the onset potential for water oxidation. The chopped-light I-V measurements performed at different intervals over 24-hour extended testing under illumination and applied bias conditions show a fair photostability for PED Co-Pi modified SiO2-BiVO4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...