Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Oncotarget ; 7(26): 39784-39795, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27174919

RESUMO

Phosphoinositide-3-kinase (PI3K) is an enzyme group, known to regulate key survival pathways in acute myeloid leukaemia (AML). It generates phosphatidylinositol-3,4,5-triphosphate, which provides a membrane docking site for protein kinaseB activation. PI3K catalytic p110 subunits are divided into 4 isoforms; α,ß,δ and γ. The PI3Kδ isoform is always expressed in AML cells, whereas the frequency of PI3Kγ expression is highly variable. The functions of these individual catalytic enzymes have not been fully resolved in AML, therefore using the PI3K p110δ and p110γ-targeted inhibitor IPI-145 (duvelisib) and specific p110δ and p110γ shRNA, we analysed the role of these two p110 subunits in human AML blast survival. The results show that PI3Kδ and PI3Kγ inhibition with IPI-145 has anti-proliferative activity in primary AML cells by inhibiting the activity of AKT and MAPK. Pre-treatment of AML cells with IPI-145 inhibits both adhesion and migration of AML blasts to bone marrow stromal cells. Using shRNA targeted to the individual isoforms we demonstrated that p110δ-knockdown had a more significant anti-proliferative effect on AML cells, whereas targeting p110γ-knockdown significantly inhibited AML migration. The results demonstrate that targeting both PI3Kδ and PI3Kγ to inhibit AML-BMSC interactions provides a biologic rationale for the pre-clinical evaluation of IPI-145 in AML.


Assuntos
Células da Medula Óssea/citologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/citologia , Adesão Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Impressões Digitais de DNA , Regulação Leucêmica da Expressão Gênica , Humanos , Isoquinolinas/farmacologia , Leucemia Mieloide Aguda/genética , Fosforilação , Purinas/farmacologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Resultado do Tratamento
3.
Lancet Haematol ; 2(5): e204-11, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26688095

RESUMO

BACKGROUND: Roughly 80% of patients with acute myeloid leukaemia have high activity of Bruton's tyrosine-kinase (BTK) in their blast cells compared with normal haemopoietic cells, rendering the cells sensitive to the oral BTK inhibitor ibrutinib in vitro. We aimed to develop the biological understanding of the BTK pathway in acute myeloid leukaemia to identify clinically relevant diagnostic information that might define a subset of patients that should respond to ibrutinib treatment. METHODS: We obtained acute myeloid leukaemia blast cells from unselected patients attending our UK hospital between Feb 19, 2010, and Jan 20, 2014. We isolated primary acute myeloid leukaemia blast cells from heparinised blood and human peripheral blood mononuclear cells to establish the activity of BTK in response to CD117 activation. Furthermore, we investigated the effects of ibrutinib on CD117-induced BTK activation, downstream signalling, adhesion to primary bone-marrow mesenchymal stromal cells, and proliferation of primary acute myeloid leukaemia blast cells. We used the Mann-Whitney U test to compare results between groups. FINDINGS: We obtained acute myeloid leukaemia blast cells from 29 patients. Ibrutinib significantly inhibited CD117-mediated proliferation of primary acute myeloid leukaemia blast cells (p=0·028). CD117 activation increased BTK activity by inducing phosphorylated BTK in patients with CD117-positive acute myeloid leukaemia. Furthermore, ibrutinib inhibited CD117-induced activity of BTK and downstream kinases at a concentration of 100 nM or more. CD117-mediated adhesion of CD117-expressing blast cells to bone-marrow stromal cells was significantly inhibited by Ibrutinib at 500 nM (p=0·028) INTERPRETATION: As first-in-man clinical trials of ibrutinib in patients with acute myeloid leukaemia commence, the data suggest not all patients will respond. Our findings show that BTK has specific pro-tumoural biological actions downstream of surface CD117 activation, which are inhibited by ibrutinib. Accordingly, we propose that patients with acute myeloid leukaemia whose blast cells express CD117 should be considered for forthcoming clinical trials of ibrutinib. FUNDING: Worldwide Cancer Research, The Big C, UK National Institutes for Health Research, the Humane Research Trust, the Department of Higher Education and Research of the Libyan Government, and Norwich Research Park.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Transdução de Sinais , Adenina/análogos & derivados , Adulto , Tirosina Quinase da Agamaglobulinemia , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/citologia , Feminino , Humanos , Leucócitos Mononucleares/citologia , Masculino , Pessoa de Meia-Idade , Piperidinas , Proteínas Proto-Oncogênicas c-kit
4.
Sci Rep ; 5: 12949, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26292723

RESUMO

Approximately 20% of patients with acute myeloid leukaemia (AML) have a mutation in FMS-like-tyrosine-kinase-3 (FLT3). FLT3 is a trans-membrane receptor with a tyrosine kinase domain which, when activated, initiates a cascade of phosphorylated proteins including the SRC family of kinases. Recently our group and others have shown that pharmacologic inhibition and genetic knockdown of Bruton's tyrosine kinase (BTK) blocks AML blast proliferation, leukaemic cell adhesion to bone marrow stromal cells as well as migration of AML blasts. The anti-proliferative effects of BTK inhibition in human AML are mediated via inhibition of downstream NF-κB pro-survival signalling however the upstream drivers of BTK activation in human AML have yet to be fully characterised. Here we place the FLT3-ITD upstream of BTK in AML and show that the BTK inhibitor ibrutinib inhibits the survival and proliferation of FLT3-ITD primary AML blasts and AML cell lines. Furthermore ibrutinib inhibits the activation of downstream kinases including MAPK, AKT and STAT5. In addition we show that BTK RNAi inhibits proliferation of FLT3-ITD AML cells. Finally we report that ibrutinib reverses the cyto-protective role of BMSC on FLT3-ITD AML survival. These results argue for the evaluation of ibrutinib in patients with FLT3-ITD mutated AML.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Proteínas Tirosina Quinases/metabolismo , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Apoptose/efeitos dos fármacos , Crise Blástica/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Daunorrubicina/farmacologia , Humanos , Mutação/genética , Piperidinas , Estrutura Terciária de Proteína , Pirazóis/farmacologia , Pirimidinas/farmacologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...