Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36679818

RESUMO

Bearings are critical components of motors. However, they can cause several issues. Proper and timely detection of faults in the bearings can play a decisive role in reducing damage to the entire system, thereby reducing economic losses. In this study, a hybrid fuzzy V-structure fuzzy fault estimator was used for fault diagnosis and crack size identification in the bearing using vibration signals. The estimator was designed based on the combination of a fuzzy algorithm and a V-structure approach to reduce the oscillation and improve the unknown condition's estimation and prediction in using the V-structure method. The V-structure surface is developed by the proposed fuzzy algorithm, which reduces the vibrations and improves the stability. In addition, the parallel fuzzy method is used to improve the robustness and stability of the V-structure algorithm. For data modeling, the proposed combination of an external autoregression error, a Laguerre filter, and a support vector regression algorithm was employed. Finally, the support vector machine algorithm was used for data classification and crack size detection. The effectiveness of the proposed approach was evaluated by leveraging the vibration signals provided in the Case Western Reserve University bearing dataset. The dataset consists of four conditions: normal, ball failure, inner fault, and outer fault. The results showed that the average accuracy of fault classification and crack size identification using the hybrid fuzzy V-structure fuzzy fault estimation algorithm was 98.75% and 98%, respectively.


Assuntos
Algoritmos , Máquina de Vetores de Suporte , Humanos , Vibração
2.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617076

RESUMO

This paper proposes a new deep learning (DL) framework for the analysis of lung diseases, including COVID-19 and pneumonia, from chest CT scans and X-ray (CXR) images. This framework is termed optimized DenseNet201 for lung diseases (LDDNet). The proposed LDDNet was developed using additional layers of 2D global average pooling, dense and dropout layers, and batch normalization to the base DenseNet201 model. There are 1024 Relu-activated dense layers and 256 dense layers using the sigmoid activation method. The hyper-parameters of the model, including the learning rate, batch size, epochs, and dropout rate, were tuned for the model. Next, three datasets of lung diseases were formed from separate open-access sources. One was a CT scan dataset containing 1043 images. Two X-ray datasets comprising images of COVID-19-affected lungs, pneumonia-affected lungs, and healthy lungs exist, with one being an imbalanced dataset with 5935 images and the other being a balanced dataset with 5002 images. The performance of each model was analyzed using the Adam, Nadam, and SGD optimizers. The best results have been obtained for both the CT scan and CXR datasets using the Nadam optimizer. For the CT scan images, LDDNet showed a COVID-19-positive classification accuracy of 99.36%, a 100% precision recall of 98%, and an F1 score of 99%. For the X-ray dataset of 5935 images, LDDNet provides a 99.55% accuracy, 73% recall, 100% precision, and 85% F1 score using the Nadam optimizer in detecting COVID-19-affected patients. For the balanced X-ray dataset, LDDNet provides a 97.07% classification accuracy. For a given set of parameters, the performance results of LDDNet are better than the existing algorithms of ResNet152V2 and XceptionNet.


Assuntos
COVID-19 , Aprendizado Profundo , Pneumonia , Humanos , COVID-19/diagnóstico por imagem , Pneumonia/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Algoritmos , Teste para COVID-19
3.
Sensors (Basel) ; 22(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36433553

RESUMO

In the machine learning and data science pipelines, feature extraction is considered the most crucial component according to researchers, where generating a discriminative feature matrix is the utmost challenging task to achieve high classification accuracy. Generally, the classical feature extraction techniques are sensitive to the noisy component of the signal and need more time for training. To deal with these issues, a comparatively new feature extraction technique, referred to as a wavelet scattering transform (WST) is utilized, and incorporated with ML classifiers to design a framework for bearing fault classification in this paper. The WST is a knowledge-based technique, and the structure is similar to the convolution neural network. This technique provides low-variance features of real-valued signals, which are usually necessary for classification tasks. These signals are resistant to signal deformation and preserve information at high frequencies. The current signal data from a publicly available dataset for three different bearing conditions are considered. By combining the scattering path coefficients, the decomposition coefficients from the 0th and 1st layers are considered as features. The experimental results demonstrate that WST-based features, when used with ensemble ML algorithms, could achieve more than 99% classification accuracy. The performance of ANN models with these features is similar. This work exhibits that utilizing WST coefficients for the motor current signal as features can improve the bearing fault classification accuracy when compared to other feature extraction approaches such as empirical wavelet transform (EWT), information fusion (IF), and wavelet packet decomposition (WPD). Thus, our proposed approach can be considered as an effective classification method for the fault diagnosis of rotating machinery.


Assuntos
Redes Neurais de Computação , Análise de Ondaletas , Aprendizado de Máquina , Algoritmos
4.
Sensors (Basel) ; 22(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236633

RESUMO

Rotating machinery plays an important role in industrial systems, and faults in the machinery may damage the system health. A novel image-based diagnosis method using improved deep convolutional generative adversarial networks (DCGAN) is proposed for the feature recognition and fault classification of rotating machinery. First, vibration signal data from the rotating machinery is transformed into time-frequency feature 2-D image data by a continuous wavelet transform and used for fault classification with the neural network method. The adaptive deep convolution neural network (ADCNN) is then combined with the generative adversarial networks (GANs) to improve the performance of the feature self-learning ability from input data. Compared with different fault diagnosis methods, the proposed method has better performance for image feature classification in rotating machinery.


Assuntos
Redes Neurais de Computação , Análise de Ondaletas , Inteligência , Aprendizagem , Reconhecimento Psicológico
5.
Sensors (Basel) ; 22(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808372

RESUMO

Diagnostics of mechanical problems in manufacturing systems are essential to maintaining safety and minimizing expenditures. In this study, an intelligent fault classification model that combines a signal-to-image encoding technique and a convolution neural network (CNN) with the motor-current signal is proposed to classify bearing faults. In the beginning, we split the dataset into four parts, considering the operating conditions. Then, the original signal is segmented into multiple samples, and we apply the Gramian angular field (GAF) algorithm on each sample to generate two-dimensional (2-D) images, which also converts the time-series signals into polar coordinates. The image conversion technique eliminates the requirement of manual feature extraction and creates a distinct pattern for individual fault signatures. Finally, the resultant image dataset is used to design and train a 2-layer deep CNN model that can extract high-level features from multiple images to classify fault conditions. For all the experiments that were conducted on different operating conditions, the proposed method shows a high classification accuracy of more than 99% and proves that the GAF can efficiently preserve the fault characteristics from the current signal. Three built-in CNN structures were also applied to classify the images, but the simple structure of a 2-layer CNN proved to be sufficient in terms of classification results and computational time. Finally, we compare the experimental results from the proposed diagnostic framework with some state-of-the-art diagnostic techniques and previously published works to validate its superiority under inconsistent working conditions. The results verify that the proposed method based on motor-current signal analysis is a good approach for bearing fault classification in terms of classification accuracy and other evaluation parameters.


Assuntos
Algoritmos , Redes Neurais de Computação
6.
Sensors (Basel) ; 22(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35632372

RESUMO

Acoustic emission techniques are widely used to monitor industrial pipelines. Intelligent methods using acoustic emission signals can analyze acoustic waves and provide important information for leak detection and localization. To address safety and protect the operation of industrial pipelines, a novel hybrid approach based on acoustic emission signals is proposed to achieve reliable leak localization. The proposed method employs minimum entropy deconvolution using the maximization kurtosis norm of acoustic emission signals to remove noise and identify important feature signals. In addition, the damping frequency energy based on the dynamic differential equation with damping term is designed to extract important energy information, and a smooth envelope for the feature signals over time is generated. The zero crossing tracks the arrival time via the envelope changes and identifies the time difference of the acoustic waves from the two channels, each of which is installed at the end of a pipeline. Finally, the time data are combined with the velocity data to localize the leak. The proposed approach has better performance than the existing generalized cross-correlation and empirical mode decomposition combined with the generalized cross-correlation methods, providing proper leak localization in the industrial pipeline.

7.
Sensors (Basel) ; 22(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35062499

RESUMO

Bearings are nonlinear systems that can be used in several industrial applications. In this study, the combination of a strict-feedback backstepping digital twin and machine learning algorithm was developed for bearing crack type/size diagnosis. Acoustic emission sensors were used to collect normal and abnormal data for various crack sizes and motor speeds. The proposed method has three main steps. In the first step, the strict-feedback backstepping digital twin is designed for acoustic emission signal modeling and estimation. After that, the acoustic emission residual signal is generated. Finally, a support vector machine is recommended for crack type/size classification. The proposed digital twin is presented in two steps, (a) AE signal modeling and (b) AE signal estimation. The AE signal in normal conditions is modeled using an autoregressive technique, the Laguerre algorithm, a support vector regression technique and a Gaussian process regression procedure. To design the proposed digital twin, a strict-feedback backstepping observer, an integral term, a support vector regression and a fuzzy logic algorithm are suggested for AE signal estimation. The Ulsan Industrial Artificial Intelligence (UIAI) Lab's bearing dataset was used to test the efficiency of the combined strict-feedback backstepping digital twin and machine learning technique for bearing crack type/size diagnosis. The average accuracies of the crack type diagnosis and crack size diagnosis of acoustic emission signals for the bearings used in the proposed algorithm were 97.13% and 96.9%, respectively.


Assuntos
Inteligência Artificial , Lógica Fuzzy , Algoritmos , Retroalimentação , Aprendizado de Máquina
8.
Sensors (Basel) ; 21(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34960552

RESUMO

Fault diagnosis and classification for machines are integral to condition monitoring in the industrial sector. However, in recent times, as sensor technology and artificial intelligence have developed, data-driven fault diagnosis and classification have been more widely investigated. The data-driven approach requires good-quality features to attain good fault classification accuracy, yet domain expertise and a fair amount of labeled data are important for better features. This paper proposes a deep auto-encoder (DAE) and convolutional neural network (CNN)-based bearing fault classification model using motor current signals of an induction motor (IM). Motor current signals can be easily and non-invasively collected from the motor. However, the current signal collected from industrial sources is highly contaminated with noise; feature calculation thus becomes very challenging. The DAE is utilized for estimating the nonlinear function of the system with the normal state data, and later, the residual signal is obtained. The subsequent CNN model then successfully classified the types of faults from the residual signals. Our proposed semi-supervised approach achieved very high classification accuracy (more than 99%). The inclusion of DAE was found to not only improve the accuracy significantly but also to be potentially useful when the amount of labeled data is small. The experimental outcomes are compared with some existing works on the same dataset, and the performance of this proposed combined approach is found to be comparable with them. In terms of the classification accuracy and other evaluation parameters, the overall method can be considered as an effective approach for bearing fault classification using the motor current signal.


Assuntos
Inteligência Artificial , Redes Neurais de Computação
9.
Sensors (Basel) ; 21(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34372246

RESUMO

In this research, the aim is to investigate an adaptive digital twin algorithm for fault diagnosis and crack size identification in bearings. The main contribution of this research is to design an adaptive digital twin (ADT). The design of the ADT technique is based on two principles: normal signal modeling and estimation of signals. A combination of mathematical and data-driven techniques will be used to model the normal vibration signal. Therefore, in the first step, the normal vibration signal is modeled to increase the reliability of the modeling algorithm in the ADT. Then, to help challenge the complexity and uncertainty, the data-driven method will solve the problems of the mathematically based algorithm. Thus, first, Gaussian process regression is selected, and then, in two steps, we improve its resistance and accuracy by a Laguerre filter and fuzzy logic algorithm. After modeling the vibration signal, the second step is to design the data estimation for ADT. These signals are estimated by an adaptive observer. Therefore, a proportional-integral observer is then combined with the proposed technique for signal modeling. Then, in two stages, its robustness and reliability are strengthened using the Lyapunov-based algorithm and adaptive technique, respectively. After designing the ADT, the residual signals that are the difference between original and estimated signals are obtained. After that, the residual signals are resampled, and the root means square (RMS) signals are extracted from the residual signals. A support vector machine (SVM) is recommended for fault classification and crack size identification. The strength of the proposed technique is tested using the Case Western Reserve University Bearing Dataset (CWRUBD) under diverse torque loads, various motor speeds, and different crack sizes. In terms of fault diagnosis, the average detection accuracy in the proposed scheme is 95.75%. In terms of crack size identification for the roller, inner, and outer faults, the proposed scheme has average detection accuracies of 97.33%, 98.33%, and 98.33%, respectively.


Assuntos
Lógica Fuzzy , Máquina de Vetores de Suporte , Algoritmos , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes
10.
Sensors (Basel) ; 21(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802732

RESUMO

Bearings are complex components with onlinear behavior that are used to mitigate the effects of inertia. These components are used in various systems, including motors. Data analysis and condition monitoring of the systems are important methods for bearing fault diagnosis. Therefore, a deep learning-based adaptive neural-fuzzy structure technique via a support vector autoregressive-Laguerre model is presented in this study. The proposed scheme has three main steps. First, the support vector autoregressive-Laguerre is introduced to approximate the vibration signal under normal conditions and extract the state-space equation. After signal modeling, an adaptive neural-fuzzy structure observer is designed using a combination of high-order variable structure techniques, the support vector autoregressive-Laguerre model, and adaptive neural-fuzzy inference mechanism for normal and abnormal signal estimation. The adaptive neural-fuzzy structure observer is the main part of this work because, based on the difference between signal estimation accuracy, it can be used to identify faults in the bearings. Next, the residual signals are generated, and the signal conditions are detected and identified using a convolution neural network (CNN) algorithm. The effectiveness of the proposed deep learning-based adaptive neural-fuzzy structure technique by support vector autoregressive-Laguerre model was analyzed using the Case Western Reverse University (CWRU) bearing vibration dataset. The proposed scheme is compared to five state-of-the-art techniques. The proposed algorithm improved the average pattern recognition and crack size identification accuracy by 1.99%, 3.84%, 15.75%, 5.87%, 30.14%, and 35.29% compared to the combination of the high-order variable structure technique with the support vector autoregressive-Laguerre model and CNN, the combination of the variable structure technique with the support vector autoregressive-Laguerre model and CNN, the combination of RAW signal and CNN, the combination of the adaptive neural-fuzzy structure technique with the support vector autoregressive-Laguerre model and support vector machine (SVM), the combination of the high-order variable structure technique with the support vector autoregressive-Laguerre model and SVM, and the combination of the variable structure technique with the support vector autoregressive-Laguerre model and SVM, respectively.

11.
IEEE Trans Neural Netw Learn Syst ; 32(11): 5144-5155, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33031043

RESUMO

A rub-impact fault is a complex, nonstationary, and nonlinear fault that occurs in turbines. Extracting features for diagnosing rubbing faults at their early stages requires complex and computationally expensive signal processing approaches that are not always suitable for industrial applications. In this article, a hybrid approach that uses a combination of deep learning and control theory algorithms is introduced for diagnosing rubbing faults of various intensities. Specifically, the system is first modeled based on the autoregressive with eXogenous input Laguerre (ARX-Laguerre) technique. In addition, the ARX-Laguerre proportional-integral observer (PIO) is used to increase the estimation accuracy for the vibration signals containing rubbing faults. Finally, a scalable deep neural network is applied to the output signal of the PIO to perform fault diagnosis and overcome potential problems that may appear when applying a linear observation technique to nonlinear signals. The experimental results demonstrate that the proposed hybrid approach improves the fault differentiation capabilities of a relatively simple linear observation technique when it is applied to a complex nonlinear rubbing fault signal and attains high fault classification accuracy. This result means that the proposed framework is highly suitable for applications in actual industrial environments.

12.
Sensors (Basel) ; 20(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153120

RESUMO

A blade rub-impact fault is one of the complex and frequently appearing faults in turbines. Due to their nonlinear and nonstationary nature, complex signal analysis techniques, which are expensive in terms of computation time, are required to extract valuable fault information from the vibration signals collected from rotor systems. In this work, a novel method for diagnosing the blade rub-impact faults of different severity levels is proposed. Specifically, the deep undercomplete denoising autoencoder is first used for estimating the nonlinear function of the system under normal operating conditions. Next, the residual signals obtained as the difference between the original signals and their estimates by the autoencoder are computed. Finally, these residual signals are used as inputs to a deep neural network to determine the current state of the rotor system. The experimental results demonstrate that the amplitudes of the residual signals reflect the changes in states of the rotor system and the fault severity levels. Furthermore, these residual signals in combination with the deep neural network demonstrated promising fault identification results when applied to a complex nonlinear fault, such as a blade-rubbing fault. To test the effectiveness of the proposed nonlinear-based fault diagnosis algorithm, this technique is compared with the autoregressive with external input Laguerre proportional-integral observer that is a linear-based fault diagnosis observation technique.

13.
Sensors (Basel) ; 18(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544685

RESUMO

The rolling element bearing is a significant component in rotating machinery. Suitable bearing fault detection and diagnosis (FDD) is vital to maintaining machine operations in a safe and healthy state. To address this issue, an extended observer-based FDD method is proposed, which uses a variable structure feedback linearization observer (FLO). The traditional feedback linearization observer is stable; however, this technique suffers from a lack of robustness. The proposed variable structure technique was used to improve the robustness of the fault estimation while reducing the uncertainties in the feedback linearization observer. The effectiveness of the proposed FLO procedure for the identification of outer, inner, and ball faults was tested using the Case Western University vibration dataset. The proposed model outperformed the variable structure observer (VSO), traditional feedback linearization observer (TFLO), and proportional-integral observer (PIO) by achieving average performance improvements of 5.5%, 8.5%, and 18.5%, respectively.

14.
Sensors (Basel) ; 18(4)2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29642459

RESUMO

An effective bearing fault detection and diagnosis (FDD) model is important for ensuring the normal and safe operation of machines. This paper presents a reliable model-reference observer technique for FDD based on modeling of a bearing's vibration data by analyzing the dynamic properties of the bearing and a higher-order super-twisting sliding mode observation (HOSTSMO) technique for making diagnostic decisions using these data models. The HOSTSMO technique can adaptively improve the performance of estimating nonlinear failures in rolling element bearings (REBs) over a linear approach by modeling 5 degrees of freedom under normal and faulty conditions. The effectiveness of the proposed technique is evaluated using a vibration dataset provided by Case Western Reserve University, which consists of vibration acceleration signals recorded for REBs with inner, outer, ball, and no faults, i.e., normal. Experimental results indicate that the proposed technique outperforms the ARX-Laguerre proportional integral observation (ALPIO) technique, yielding 18.82%, 16.825%, and 17.44% performance improvements for three levels of crack severity of 0.007, 0.014, and 0.021 inches, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...