Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiother Res Int ; 29(3): e2102, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861661

RESUMO

BACKGROUND: Transcranial Magnetic Stimulation (TMS) studies examining exercise-induced neuroplasticity in pain populations have produced contradictory findings. We conducted a systematic review to explore how exercise impacts cortical excitability in pain populations using TMS metrics. This review aims to summarize the effect sizes and to understand their sources of heterogeneity. METHODS: We searched multiple databases from inception to December 2022. We included randomized controlled trials (RCTs) with any type of pain population, including acute and chronic pain; exercise interventions were compared to sham exercise or other active interventions. The primary outcomes were TMS metrics, and pain intensity was the secondary outcome. Risk of bias assessment was conducted using the Cochrane tool. RESULTS: This review included five RCTs (n = 155). The main diagnoses were fibromyalgia and cervical dystonia. The interventions included submaximal contractions, aerobic exercise, physical therapy, and exercise combined with transcranial direct current stimulation. Three studies are considered to have a high risk of bias. All five studies showed significant pain improvement with exercise. The neurophysiological data revealed improvements in cortical excitability measured by motor-evoked potentials; standardized mean difference = 2.06, 95% confidence interval 1.35-2.78, I2 = 19%) but no significant differences in resting motor threshold. The data on intracortical inhibition/facilitation (ICI/ICF) was not systematically analyzed, but one study (n = 45) reported higher ICI and lower ICF after exercise. CONCLUSIONS: These findings suggest that exercise interventions positively affect pain relief by modifying corticospinal excitability, but their effects on ICI/ICF are still unclear. While the results are inconclusive, they provide a basis for further exploration in this area of research; future studies should focus on establishing standardized TMS measurements and exercise protocols to ensure consistent and reliable findings. A large-scale RCT that examines various exercise interventions and their effects on cortical excitability could offer valuable insights to optimize its application in promoting neuroplasticity in pain populations.


Assuntos
Excitabilidade Cortical , Terapia por Exercício , Humanos , Excitabilidade Cortical/fisiologia , Terapia por Exercício/métodos , Estimulação Magnética Transcraniana , Ensaios Clínicos Controlados Aleatórios como Assunto , Manejo da Dor/métodos , Potencial Evocado Motor/fisiologia , Dor Crônica/terapia , Plasticidade Neuronal/fisiologia , Exercício Físico/fisiologia
2.
Biomedicines ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37371638

RESUMO

The role of transcranial magnetic stimulation (TMS) measures as biomarkers of fibromyalgia syndrome (FMS) phenotypes is still unclear. We aimed to determine the clinical correlates of TMS measures in FMS patients. We conducted a cross-sectional analysis that included 58 patients. We performed standardized TMS assessments, including resting motor threshold (MT), motor-evoked potential (MEP), short intracortical inhibition (SICI), and intracortical facilitation (ICF). Sociodemographic, clinical questionnaires, and quantitative sensory testing were collected from all of the patients. Univariate and multivariate linear regression models were built to explore TMS-associated factors. We found that SICI did not significantly correlate with pain levels but was associated with sleepiness, comorbidities, disease duration, and anxiety. On the other hand, ICF showed a positive correlation with pain levels and a negative correlation with body mass index (BMI). BMI was a negative effect modifier of the ICF and pain association. The clinical correlates of MT and MEP were scarce. Our results suggest that SICI and ICF metrics are potential phenotyping biomarkers in FMS related to disease compensation and levels of pain perception, respectively. The clinical translation of TMS paired-pulse protocols represents an opportunity for a mechanistic understanding of FMS and the future development of precision treatments.

3.
J Vis Exp ; (186)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36094268

RESUMO

Contralateral silent period (cSP) is a period of suppression in the background electrical muscle activity captured by electromyography (EMG) after a motor evoked potential (MEP). To obtain this, an MEP is elicited by a suprathreshold transcranial magnetic stimulation (TMS) pulse delivered to the primary motor cortex (M1) of the target muscle selected, while the participant provides a standardized voluntary target muscle contraction. The cSP is a result of inhibitory mechanisms that occur after the MEP; it provides a broad temporal assessment of spinal inhibition in its initial ~50 ms, and cortical inhibition after. Researchers have tried to better understand the neurobiological mechanism behind the cSP to validate it as a potential diagnostic, surrogate, and predictive biomarker for different neuropsychiatric diseases. Therefore, this article describes a method to measure M1 cSP of lower and upper limbs, including a selection of target muscle, electrode placement, coil positioning, method of measuring voluntary contraction stimulation, intensity setup, and data analysis to obtain a representative result. It has the educational objective of giving a visual guideline in performing a feasible, reliable, and reproducible cSP protocol for lower and upper limbs and discussing practical challenges of this technique.


Assuntos
Músculo Esquelético , Estimulação Magnética Transcraniana , Eletromiografia/métodos , Potencial Evocado Motor/fisiologia , Humanos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia
4.
Brain Netw Modul ; 1(2): 88-101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845034

RESUMO

Fibromyalgia (FM) is a common and refractory chronic pain condition with multiple clinical phenotypes. The current diagnosis is based on a syndrome identification which can be subjective and lead to under or over-diagnosis. Therefore, there is a need for objective biomarkers for diagnosis, phenotyping, and prognosis (treatment response and follow-up) in fibromyalgia. Potential biomarkers are measures of cortical excitability indexed by transcranial magnetic stimulation (TMS). However, no systematic analysis of current evidence has been performed to assess the role of TMS metrics as a fibromyalgia biomarker. Therefore, this study aims to evaluate evidence on corticospinal and intracortical motor excitability in fibromyalgia subjects and to assess the prognostic role of TMS metrics as response biomarkers in FM. We conducted systematic searches on PubMed/Medline, Embase, and Cochrane Central databases for observational studies and randomized controlled trials on fibromyalgia subjects that used TMS as an assessment. Three reviewers independently selected and extracted the data. Then, a random-effects model meta-analysis was performed to compare fibromyalgia and healthy controls in observational studies. Also, to compare active versus sham treatments, in randomized controlled trials. Correlations between changes in TMS metrics and clinical improvement were explored. The quality and evidence certainty were assessed following standardized approaches. We included 15 studies (696 participants, 474 FM subjects). The main findings were: (1) fibromyalgia subjects present less intracortical inhibition (mean difference (MD) = -0.40, 95% confidence interval (CI) -0.69 to -0.11) and higher resting motor thresholds (MD = 6.90 µV, 95% CI 4.16 to 9.63 µV) when compared to controls; (2) interventions such as exercise, pregabalin, and non-invasive brain stimulation increased intracortical inhibition (MD = 0.19, 95% CI 0.10 to 0.29) and cortical silent period (MD = 14.92 ms, 95% CI 4.86 to 24.98 ms), when compared to placebo or sham stimulation; (3) changes on intracortical excitability are correlated with clinical improvements - higher inhibition moderately correlates with less pain, depression, and pain catastrophizing; lower facilitation moderately correlates with less fatigue. Measures of intracortical inhibition and facilitation indexed by TMS are potential diagnostic and treatment response biomarkers for fibromyalgia subjects. The disruption in the intracortical inhibitory system in fibromyalgia also provides additional evidence that fibromyalgia has some neurophysiological characteristics of neuropathic pain. Treatments inducing an engagement of sensorimotor systems (e.g., exercise, motor imagery, and non-invasive brain stimulation) could restore the cortical inhibitory tonus in FM and induce clinical improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...