Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 95(25): 14781-6, 1998 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-9843966

RESUMO

We previously provided evidence that the protein encoded by the highly conserved skb1 gene is a putative regulator of Shk1, a p21(Cdc42/Rac)-activated kinase (PAK) homolog in the fission yeast Schizosaccharomyces pombe. skb1 null mutants are viable and competent for mating but less elongate than wild-type S. pombe cells, whereas cells that overexpress skb1 are hyperelongated. These phenotypes suggest a possible role for Skb1 as a mitotic inhibitor. Here we show genetic interactions of both skb1 and shk1 with genes encoding key mitotic regulators in S. pombe. Our results indicate that Skb1 negatively regulates mitosis by a mechanism that is independent of the Cdc2-activating phosphatase Cdc25 but that is at least partially dependent on Shk1 and the Cdc2 inhibitory kinase Wee1. We provide biochemical evidence for association of Skb1 and Shk1 with Cdc2 in S. pombe, suggesting that Skb1 and Shk1 inhibit mitosis through interaction with the Cdc2 complex, rather than by an indirect mechanism. These results provide evidence of a previously undescribed role for PAK-related protein kinases as mitotic inhibitors. We also describe the cloning of a human homolog of skb1, SKB1Hs, and show that it can functionally replace skb1 in S. pombe. Thus, the molecular functions of Skb1-related proteins have likely been substantially conserved through evolution.


Assuntos
Proteínas de Transporte/genética , Regulação Fúngica da Expressão Gênica , Metiltransferases , Mitose/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Schizosaccharomyces/citologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Quinases Ativadas por p21
2.
J Biol Chem ; 273(29): 18481-9, 1998 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-9660817

RESUMO

We describe the characterization of a novel gene, shk2, encoding a second p21(cdc42/rac)-activated protein kinase (PAK) homolog in fission yeast. Like other known PAKs, Shk2 binds to Cdc42 in vivo and in vitro. While overexpression of either shk2 or cdc42 alone does not impair growth of wild type fission yeast cells, cooverexpression of the two genes is toxic and leads to highly aberrant cell morphology, providing evidence for functional interaction between Cdc42 and Shk2 proteins in vivo. Fission yeast shk2 null mutants are viable and exhibit no obvious phenotypic defects. Overexpression of shk2 restores viability and normal morphology but not full mating competence to fission yeast cells carrying a shk1 null mutation. Additional genetic data suggest that Shk2, like Cdc42 and Shk1, participates in Ras-dependent morphological control and mating response pathways in fission yeast. We also show that overexpression of byr2, a gene encoding a Ste11/MAPK kinase kinase homolog, suppresses the mating defect of cells partially defective for Shk1 function, providing evidence of a link between PAKs and mitogen-activated protein kinase signaling in fission yeast. Taken together, our results suggest that Shk2 is partially overlapping in function with Shk1, with Shk1 being the dominant protein in function.


Assuntos
Genes Fúngicos , MAP Quinase Quinase Quinases , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/enzimologia , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP , Quinases Ativadas por p21
3.
J Biol Chem ; 271(45): 28128-37, 1996 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-8910427

RESUMO

Mucins function as a protective layer rendering the apical surface of epithelial cells nonadhesive to a variety of microorganisms and macromolecules. Muc-1 is a transmembrane mucin expressed at the apical cell surface of mouse uterine epithelial cells (UEC) that disappears as UEC become receptive for embryo implantation (Surveyor, G. A., Gendler, S. J., Pemberton, L., Das, S. K., Chakraborty, I., Julian, J., Pimental, R. A., Wegner, C. W., Dey, S. K., and Carson, D. D. (1995) Endocrinology 136, 3639-3647). In the present study, the kinetics of Muc-1 assembly, cell surface expression, release, and degradation were examined in polarized mouse UEC in vitro. Mucins were identified as the predominant glycoconjugates synthesized, apically expressed, and vectorially released in both wild-type and Muc-1 null mice. When mucins were released, greater than 95% were directed to the apical compartment. Approximately half of the cell-associated mucins lost during a 24-h period were found in the apical compartment. Vectorial biotinylation detected apically disposed, cell-surface mucin and indicated that at least 34% of these mucins are released apically within 24 h. This suggests that release of mucin ectodomains is part of the mechanism of mucin removal from the apical cell surface of UEC. The half-lives of total cell-associated mucins and Muc-1 were 19.5 +/- 1 and 16.5 +/- 0.8 h, respectively. Muc-1 represented approximately 10% of the [3H]glucosamine-labeled, cell-associated mucins. Studies of the kinetics of intracellular transport of Muc-1 indicated transit times of 21 +/- 15 min from the rough endoplasmic reticulum to Golgi apparatus and 111 +/- 28 min from the Golgi apparatus to the cell surface. Collectively, these studies provide the first comprehensive description of Muc-1 and mucin maturation, metabolism, and release by polarized cells, as well as defining a major metabolic fate for mucins expressed by UEC. Normal metabolic processing appears to be sufficient to account for the removal of Muc-1 protein during the transition of UEC to a receptive state.


Assuntos
Mucina-1/biossíntese , Útero/metabolismo , Animais , Cromatografia em Gel , Cicloeximida/farmacologia , Epitélio/metabolismo , Feminino , Glucosamina/metabolismo , Meia-Vida , Cinética , Camundongos , Modelos Biológicos , Útero/citologia , Aglutininas do Germe de Trigo/metabolismo
4.
Endocrinology ; 136(8): 3639-47, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7628404

RESUMO

Previous studies from our laboratory established that large M(r) mucin glycoproteins are major apically disposed components of mouse uterine epithelial cells in vitro. The present studies demonstrate that Muc-1 represents one of the apically disposed mucin glycoproteins of mouse uterine epithelia, and that Muc-1 protein and messenger RNA (mRNA) expression are regulated in the periimplantation mouse uterus by ovarian steroids. Muc-1 expression is exclusive to the epithelial cells of the uterus under all conditions examined. Muc-1 expression is high in the proestrous and estrous stages and decreases during diestrous. Both Muc-1 protein and mRNA decline to barely detectable levels by day 4 of pregnancy, i.e. before the time of blastocyst attachment. In contrast, Muc-1 expression in the cervix and vagina is maintained during this same period. Delayed implantation was established in pregnant mice by ovariectomy and maintained by the administration of exogenous progesterone (P). Initiation of implantation was triggered by coinjection of P-maintained mice with a nidatory dose of 17 beta-estradiol (E2). Muc-1 levels in the uterine epithelia of P-maintained mice declined to low levels similar to those observed on day 4 of normal pregnancy. Coinjection of E2 did not alter Muc-1 expression, suggesting that down-regulation of Muc-1 is a P-dominated event. This was confirmed in ovariectomized nonpregnant mice, which displayed stimulation of Muc-1 expression after 6 h of E2 injection. E2-Stimulated Muc-1 expression was inhibited by the pure antiestrogen, ICI 164,384. Although P alone had no effect on Muc-1 expression, it antagonized the action of E2. Injection of pregnant mice with the antiprogestin, RU486, a known implantation inhibitor, on day 3 of pregnancy restored high level expression of Muc-1 mRNA on day 4, indicating that down-regulation of Muc-1 is P receptor mediated. Collectively, these data indicate that Muc-1 expression in mouse uterine epithelium is strongly influenced by ovarian steroids. It is suggested that the loss of Muc-1 contributes to generation of a receptive uterine state.


Assuntos
Estradiol/farmacologia , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Progesterona/farmacologia , Útero/metabolismo , Animais , Sítios de Ligação , Implantação do Embrião , Estro , Feminino , Genitália Feminina/metabolismo , Soros Imunes , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos , Mifepristona/farmacologia , Mucina-1 , Mucinas/genética , Testes de Precipitina , Gravidez , RNA Mensageiro/metabolismo , Aglutininas do Germe de Trigo/metabolismo
5.
Mol Cell Biol ; 13(7): 4365-73, 1993 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8391636

RESUMO

The rat glutathione S-transferase Ya gene xenobiotic response element (XRE) has both constitutive and xenobiotic-inducible activity. We present evidence that the XRE is regulated by both the constitutive C/EBP transcription factor and the xenobiotic-activated dioxin receptor. A ligand-activated XRE-binding protein was shown to be dioxin receptor by specific antibody immunodepletion and binding of highly purified receptor. Identification of C/EBP alpha as the constitutive binding protein was demonstrated by competition with a C/EBP binding site, protein-DNA cross-linking to determine the molecular weight of the constitutive protein(s), specific antibody immunodepletion, and binding of purified bacterially expressed C/EBP alpha. Mutational analysis of the XRE revealed that the constitutive factor (C/EBP alpha) shares a nearly identical overlapping binding site with the dioxin receptor. In functional testing of the putative C/EBP-XRE interaction, cotransfected C/EBP alpha activated an XRE test promoter in the non-xenobiotic-responsive HeLa cell line. Unexpectedly, cotransfected C/EBP alpha had no effect on basal activity but significantly increased the xenobiotic response of the XRE test promoter in the xenobiotic-responsive, C/EBP-positive HepG2 cell line. Furthermore, inhibition of C/EBP-binding protein(s) in HepG2 cells by transfection of C/EBP oligonucleotides suppressed the xenobiotic response. These results suggest that C/EBP alpha and dioxin receptor recognize the same DNA sequence element and that transcriptional regulation can occur by cooperative interactions between these two transcription factors.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Enzimológica da Expressão Gênica , Glutationa Transferase/genética , Proteínas Nucleares/metabolismo , Receptores de Droga/metabolismo , Animais , Sequência de Bases , Proteínas Estimuladoras de Ligação a CCAAT , Linhagem Celular , DNA , Eletroforese em Gel de Poliacrilamida , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ratos , Receptores de Hidrocarboneto Arílico , Xenobióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...