Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323926

RESUMO

Aquaporin-3 (AQP3) is a membrane channel with dual aquaglyceroporin/peroxiporin activity, facilitating the diffusion of water, glycerol and H2 O2 across cell membranes. AQP3 shows aberrant expression in melanoma and its role in cell adhesion, migration and proliferation is well described. Gold compounds were shown to modulate AQP3 activity with reduced associated toxicity, making them promising molecules for cancer therapy. In this study, we validated the phenotype resulting from AQP3-silencing of two melanoma cell lines, MNT-1 and A375, which resulted in decreased H2 O2 permeability. Subsequently, the AQP3 inhibitory effect of a new series of organogold compounds derived from Auphen, a potent AQP3 inhibitor, was first evaluated in red blood cells (RBCs) that highly express AQP3, and then in HEK-293T cells with AQP3 overexpression to ascertain the compounds' specificity. The first screening in RBCs unveiled two organogold compounds as promising blockers of AQP3 permeability. Moderate reduction of glycerol permeability but drastic inhibition of H2 O2 permeability was detected for some of the gold derivatives in both AQP3-overexpressing cells and human melanoma cell lines. Additionally, all compounds were effective in impairing cell adhesion, proliferation and migration, although in a cell type-dependent manner. In conclusion, our data show that AQP3 peroxiporin activity is crucial for melanoma progression and highlight organogold compounds as promising AQP3 inhibitors with implications in melanoma cell adhesion, proliferation and migration, unveiling their potential as anticancer drugs against AQP3-overexpressing tumours. KEY POINTS: AQP3 affects cellular redox balance. Gold compounds inhibit AQP3 permeability in melanoma cells. AQP3 is involved in cell adhesion, proliferation and migration of melanoma. Blockage of AQP3 peroxiporin activity impairs melanoma cell migration. Gold compounds are potential anticancer drug leads for AQP3-overexpressing cancers.

2.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983077

RESUMO

The natural polyphenolic compound Rottlerin (RoT) showed anticancer properties in a variety of human cancers through the inhibition of several target molecules implicated in tumorigenesis, revealing its potential as an anticancer agent. Aquaporins (AQPs) are found overexpressed in different types of cancers and have recently emerged as promising pharmacological targets. Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a key role in cancer and metastasis. Here, we report the ability of RoT to inhibit human AQP3 activity with an IC50 in the micromolar range (22.8 ± 5.82 µM for water and 6.7 ± 2.97 µM for glycerol permeability inhibition). Moreover, we have used molecular docking and molecular dynamics simulations to understand the structural determinants of RoT that explain its ability to inhibit AQP3. Our results show that RoT blocks AQP3-glycerol permeation by establishing strong and stable interactions at the extracellular region of AQP3 pores interacting with residues essential for glycerol permeation. Altogether, our multidisciplinary approach unveiled RoT as an anticancer drug against tumors where AQP3 is highly expressed providing new information to aquaporin research that may boost future drug design.


Assuntos
Aquaporina 3 , Aquaporinas , Humanos , Aquaporina 3/química , Simulação de Acoplamento Molecular , Glicerol/química , Aquaporinas/química , Água/metabolismo
3.
Front Mol Biosci ; 9: 845237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187089

RESUMO

Aquaglyceroporins, a sub-class of aquaporins that facilitate the diffusion of water, glycerol and other small uncharged solutes across cell membranes, have been recognized for their important role in human physiology and their involvement in multiple disorders, mostly related to disturbed energy homeostasis. Aquaglyceroporins dysfunction in a variety of pathological conditions highlighted their targeting as novel therapeutic strategies, boosting the search for potent and selective modulators with pharmacological properties. The identification of selective inhibitors with potential clinical applications has been challenging, relying on accurate assays to measure membrane glycerol permeability and validate effective functional blockers. Additionally, biologicals such as hormones and natural compounds have been revealed as alternative strategies to modulate aquaglyceroporins via their gene and protein expression. This review summarizes the current knowledge of aquaglyceroporins' involvement in several pathologies and the experimental approaches used to evaluate glycerol permeability and aquaglyceroporin modulation. In addition, we provide an update on aquaglyceroporins modulators reported to impact disease, unveiling aquaglyceroporin pharmacological targeting as a promising approach for innovative therapeutics.

4.
Metallomics ; 13(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34468767

RESUMO

The inhibition of glycerol permeation via human aquaporin-10 (hAQP10) by organometallic gold complexes has been studied by stopped-flow fluorescence spectroscopy, and its mechanism has been described using molecular modelling and atomistic simulations. The most effective hAQP10 inhibitors are cyclometalated Au(III) C^N compounds known to efficiently react with cysteine residues leading to the formation of irreversible C-S bonds. Functional assays also demonstrate the irreversibility of the binding to hAQP10 by the organometallic complexes. The obtained computational results by metadynamics show that the local arylation of Cys209 in hAQP10 by one of the gold inhibitors is mapped into a global change of the overall free energy of glycerol translocation across the channel. Our study further pinpoints the need to understand the mechanism of glycerol and small molecule permeation as a combination of local structural motifs and global pore conformational changes, which are taking place on the scale of the translocation process and whose study, therefore, require sophisticated molecular dynamics strategies.


Assuntos
Aquaporinas/antagonistas & inibidores , Compostos Organoáuricos/farmacologia , Fenômenos Biofísicos , Humanos , Simulação de Dinâmica Molecular , Espectrometria de Fluorescência/métodos
5.
Biochimie ; 188: 35-44, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34097985

RESUMO

Skin is the most vulnerable organ of the human body since it is the first line of defense, covering the entire external body surface. Additionally, skin has a critical role in thermoregulation, sensation, immunological surveillance, and biochemical processes such as Vitamin D3 production by ultraviolet irradiation. The ability of the skin layers and resident cells to maintain skin physiology, such as hydration, regulation of keratinocytes proliferation and differentiation and wound healing, is supported by key proteins such as aquaporins (AQPs) that facilitate the movements of water and small neutral solutes across membranes. Various AQP isoforms have been detected in different skin-resident cells where they perform specific roles, and their dysregulation has been associated with several skin pathologies. This review summarizes the current knowledge of AQPs involvement in skin physiology and pathology, highlighting their potential as druggable targets for the treatment of skin disorders.


Assuntos
Aquaporinas/fisiologia , Dermatopatias/fisiopatologia , Dermatopatias/terapia , Pele/metabolismo , Animais , Aquaporinas/efeitos dos fármacos , Glicerol/metabolismo , Humanos , Terapia de Alvo Molecular , Isoformas de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/fisiologia , Água/metabolismo
6.
PLoS One ; 16(1): e0245739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33465153

RESUMO

The regulation of glycerol permeability in the gastrointestinal tract is crucial to control fat deposition, lipolysis and gluconeogenesis. Knowing that the amino acid glutamine is a physiological regulator of gluconeogenesis, whereas cystine promotes adiposity, herein we investigated the effects of dietary supplementation with glutamine and cystine on the serum biochemical parameters of piglets fed on amino acid-enriched diets, as well as on the transcriptional profile of membrane water and glycerol channels aquaporins (AQPs) in the ileum portion of the small intestine and its impact on intestinal permeability. Twenty male piglets with an initial body weight of 8.8 ± 0.89 kg were allocated to four dietary treatments (n = 5) and received, during a four week-period, a basal diet without supplementation (control) or supplemented with 8 kg/ton of glutamine (Gln), cystine (Cys) or the combination of the two amino acids in equal proportions (Gln + Cys). Most biochemical parameters were found improved in piglets fed Gln and Cys diet. mRNA levels of AQP3 were found predominant over the others. Both amino acids, individually or combined, were responsible for a consistent downregulation of AQP1, AQP7 and AQP10, without impacting on water permeability. Conversely, Cys enriched diet upregulated AQP3 enhancing basolateral membranes glycerol permeability and downregulating glycerol kinase (GK) of intestinal cells. Altogether, our data reveal that amino acids dietary supplementation can modulate intestinal AQPs expression and unveil AQP3 as a promising target for adipogenesis regulation.


Assuntos
Ração Animal/análise , Aquaporinas/metabolismo , Cistina/farmacologia , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamina/farmacologia , Intestino Delgado/metabolismo , Animais , Animais Recém-Nascidos , Aquaporinas/genética , Cistina/administração & dosagem , Glutamina/administração & dosagem , Intestino Delgado/efeitos dos fármacos , Masculino , Suínos
7.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252345

RESUMO

Polyoxometalates (POMs) are of increasing interest due to their proven anticancer activities. Aquaporins (AQPs) were found to be overexpressed in tumors bringing particular attention to their inhibitors as anticancer drugs. Herein, we report for the first time the ability of polyoxotungstates (POTs), such as of Wells-Dawson P2W18, P2W12, and P2W15, and Preyssler P5W30 structures, to affect aquaporin-3 (AQP3) activity and impair melanoma cell migration. The tested POTs were revealed to inhibit AQP3 function with different effects, with P2W18, P2W12, and P5W30 being the most potent (50% inhibitory concentration (IC50) = 0.8, 2.8, and 3.2 µM), and P2W15 being the weakest (IC50 > 100 µM). The selectivity of P2W18 toward AQP3 was confirmed in yeast cells transformed with human aquaglyceroporins. The effect of P2W12 and P2W18 on melanoma cells that highly express AQP3 revealed an impairment of cell migration between 55% and 65% after 24 h, indicating that the anticancer properties of these compounds may in part be due to the blockage of AQP3-mediated permeability. Altogether, our data revealed that P2W18 strongly affects AQP3 activity and cancer cell growth, unveiling its potential as an anticancer drug against tumors where AQP3 is highly expressed.


Assuntos
Aquaporina 3/antagonistas & inibidores , Compostos de Tungstênio/farmacologia , Animais , Aquaporina 3/química , Aquaporina 3/genética , Aquaporina 3/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glicerol/metabolismo , Humanos , Melanoma , Estrutura Molecular , Compostos de Tungstênio/química , Água/metabolismo
8.
Cancers (Basel) ; 11(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277235

RESUMO

Reactive oxygen species (ROS), including H2O2, contribute to oxidative stress and may cause cancer initiation and progression. However, at low concentrations, H2O2 can regulate signaling pathways modulating cell growth, differentiation, and migration. A few mammalian aquaporins (AQPs) facilitate H2O2 diffusion across membranes and participate in tumorigenesis. AQP3 and AQP5 are strongly expressed in cancer tissues and AQP3-mediated H2O2 transport has been related to breast cancer cell migration, but studies with human AQP5 are lacking. Here, we report that, in addition to its established water permeation capacity, human AQP5 facilitates transmembrane H2O2 diffusion and modulates cell growth of AQP5-transformed yeast cells in response to oxidative stress. Mutagenesis studies revealed that residue His173 located in the selective filter is crucial for AQP5 permeability, and interactions with phosphorylated Ser183 may regulate permeation through pore blockage. Moreover, in human pancreatic cancer cells, the measured AQP5-mediated H2O2 influx rate indicates the presence of a highly efficient peroxiporin activity. Cell migration was similarly suppressed by AQP3 or AQP5 gene silencing and could be recovered by external oxidative stimuli. Altogether, these results unveiled a major role for AQP5 in dynamic fine-tuning of the intracellular H2O2 concentration, and consequently in activating signaling networks related to cell survival and cancer progression, highlighting AQP5 as a promising drug target for cancer therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...