Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NanoImpact ; 30: 100461, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37040858

RESUMO

There has been an increasing use of advanced materials, particularly manufactured nanomaterials, in industrial applications and consumer products in the last two decades. It has instigated concerns about the sustainability, in particular, risks and uncertainties regarding the interactions of the manufactured nanomaterials with humans and the environment. Consequently, significant resources in Europe and beyond have been invested into the development of tools and methods to support risk mitigation and risk management, and thus facilitate the research and innovation process of manufactured nanomaterials. The level of risk analysis is increasing, including assessment of socio-economic impacts, and sustainability aspects, moving from a conventional risk-based approach to a wider safety-and-sustainability-by-design perspective. Despite these efforts on tools and methods development, the level of awareness and use of most of such tools and methods by stakeholders is still limited. Issues of regulatory compliance and acceptance, reliability and trust, user-friendliness and compatibility with the users' needs are some of the factors which have been traditionally known to hinder their widespread use. Therefore, a framework is presented to quantify the readiness of different tools and methods towards their wider regulatory acceptance and downstream use by different stakeholders. The framework diagnoses barriers which hinder regulatory acceptance and wider usability of a tool/method based on their Transparency, Reliability, Accessibility, Applicability and Completeness (TRAAC framework). Each TRAAC pillar consists of criteria which help in evaluating the overall quality of the tools and methods for their (i) compatibility with regulatory frameworks and (ii) usefulness and usability for end-users, through a calculated TRAAC score based on the assessment. Fourteen tools and methods were assessed using the TRAAC framework as proof-of-concept and for user variability testing. The results provide insights into any gaps, opportunities, and challenges in the context of each of the 5 pillars of the TRAAC framework. The framework could be, in principle, adapted and extended to the evaluation of other type of tools & methods, even beyond the case of nanomaterials.


Assuntos
Nanoestruturas , Humanos , Reprodutibilidade dos Testes , Gestão de Riscos , Medição de Risco/métodos , Europa (Continente)
2.
Eur Phys J E Soft Matter ; 41(2): 28, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29488023

RESUMO

The hydrodynamics of a flagellated microswimmer moving in thin films is discussed. The fully resolved hydrodynamics is exploited by solving the Stokes equations for the actual geometry of the swimmer. Two different interfaces are used to confine the swimmer: a bottom solid wall and a top air-liquid interface, as appropriate for a thin film. The swimmer follows curved clockwise trajectories that can converge towards an asymptotically stable circular path or can result in a collision with one of the two interfaces. A bias towards the air-liquid interface emerges. Slight changes in the swimmer geometry and film thickness strongly affect the resulting dynamics suggesting that a very reach phenomenology occurs in the presence of confinement. Under specific conditions, the swimmer follows a "crown-like" path. Implications for the motion of bacteria close to an air bubble moving in a microchannel are discussed.


Assuntos
Flagelos/fisiologia , Hidrodinâmica , Modelos Teóricos , Movimento , Escherichia coli/fisiologia , Pseudomonas aeruginosa/fisiologia , Propriedades de Superfície
3.
Phys Rev E ; 96(4-1): 042603, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29347505

RESUMO

We analyzed the effect of confinement on the effective diffusion of a run-and-tumble E. coli-like flagellated microswimmer. We used a simulation protocol where the run phases are obtained via a fully resolved swimming problem, i.e., Stokes equations for the fluid coupled with rigid-body dynamics for the microorganism, while tumbles and collisions with the walls are modeled as random reorientation of the microswimmer. For weak confinement, the swimmer is trapped in circular orbits close to the solid walls. In this case, optimal diffusivity is observed when the tumbling frequency is comparable with the angular velocity of the stable orbits. For strong confinement, stable circular orbits disappear and the diffusion coefficient monotonically decreases with the tumbling rate. Our findings are generic and can be potentially applied to other natural or artificial chiral microswimmers that follow circular trajectories close to an interface or in confined geometries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...