Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(43): 17926-17930, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34695360

RESUMO

The location of aluminum in a zeolite framework structure defines the accessibility and geometry of the catalytically active sites, but determining this location crystallographically is fraught with difficulties. Typical zeolite catalysts contain only a small amount of aluminum, and the X-ray scattering factors for silicon and aluminum are very similar. To address this problem, we have exploited the properties of resonant X-ray powder diffraction across the Al K edge, where the aluminum scattering factor changes dramatically. By combining conventional synchrotron powder diffraction data with those collected at energies near the X-ray absorption edge, aluminum is highlighted. In this way, the different distributions of aluminum in two FER-type zeolites with identical chemical compositions but different catalytic properties could be determined unambiguously. The results are consistent with previous studies, but quantitative. This approach constitutes a major advance in our fundamental understanding of the relationship between zeolite structure and catalytic activity.

2.
RSC Adv ; 11(49): 31058-31061, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35498933

RESUMO

Zeolite mordenite (MOR) is one of the most studied zeolites for the stepwise direct conversion of methane to methanol, but it also can exist in two forms: large port and small port. Here we report that the synthesis and selection of the parent mordenite is critical for optimizing productivity, and that large-port mordenite outperforms small-port mordenite for the stepwise conversion of methane to methanol.

3.
Chem Commun (Camb) ; 55(78): 11794-11797, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31524890

RESUMO

The isothermal, low-temperature stepwise conversion of methane to methanol over copper-exchanged zeolites eliminates the time-consuming heating and cooling steps of the conventional high temperature activation approach. To better understand differences between the two approaches, a series of zeolites were screened, of which omega zeolite (MAZ) showed superior performance in both the isothermal and conventional approaches.

4.
Chem Commun (Camb) ; 55(4): 482-485, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30548027

RESUMO

Using heavy-atom labeling in conjunction with electron microscopy, we here visualize the distribution of point defects, i.e. internal silanol groups, in silicalite-1 zeolites at the single crystal level.

5.
J Am Chem Soc ; 140(32): 10090-10093, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30071725

RESUMO

The application and quantification of in situ copper K-edge X-ray absorption near-edge structure (XANES), when linked to independently made reactor-based studies of methanol production, result in a majority relation between the production of CuI and methanol from methane that complies with the expectations of a two-electron mechanism founded upon CuII/CuI redox couples.

6.
Chemistry ; 24(10): 2384-2388, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29193398

RESUMO

Electron-diffraction data on the zeolites Silicalite-1 and ZSM-5 (both MFI framework type) were collected from individual grains of about 150×100×50 nm3 . Crystals were synthesized with tetrapropylammonium as structure-directing agent. The resolution extended to about 0.8 Šfor Silicalite-1 and about 0.9-1.0 Šfor ZSM-5 crystals. Analysis of several data sets showed that at the nanometre-scale, these zeolite crystals are single crystals and not intergrown.

7.
Nanoscale ; 9(3): 1144-1153, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28009911

RESUMO

Copper-containing zeolites exhibit high activity in the direct partial oxidation of methane into methanol at relatively low temperatures. Di- and tricopper species have been proposed as active catalytic sites, with recent experimental evidence also suggesting the possibility of the formation of larger copper oxide species. Using density functional theory based global geometry optimization, we were able to identify a general trend of the copper oxide cluster stability increasing with size. For instance, the identified ground-state structures of tetra- and pentamer copper clusters of CunOn2+ and CunOn-12+ stoichiometries embedded in an 8-ring channel of mordenite exhibit higher relative stability compared to smaller clusters. Moreover, the aluminium content and localization in the zeolite pore influence the cluster's stability and its geometrical motif, which offers a perspective of tuning the properties of copper-exchanged zeolites by creating copper oxide clusters of a given structure and size. With the activity of the cluster towards methane being connected to its stability, such tuning will potentially allow the design of catalysts with engineered properties.

8.
Dalton Trans ; 45(36): 14124-30, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27527381

RESUMO

The disordered intermediate of the ADORable zeolite UTL has been structurally confirmed using the pair distribution function (PDF) technique. The intermediate, IPC-1P, is a disordered layered compound formed by the hydrolysis of UTL in 0.1 M hydrochloric acid solution. Its structure is unsolvable by traditional X-ray diffraction techniques. The PDF technique was first benchmarked against high-quality synchrotron Rietveld refinements of IPC-2 (OKO) and IPC-4 (PCR) - two end products of IPC-1P condensation that share very similar structural features. An IPC-1P starting model derived from density functional theory was used for the PDF refinement, which yielded a final fit of Rw = 18% and a geometrically reasonable structure. This confirms the layers do stay intact throughout the ADOR process and shows PDF is a viable technique for layered zeolite structure determination.

9.
Nat Commun ; 6: 8633, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26482337

RESUMO

Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact.

10.
Chemistry ; 21(40): 14156-64, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26268428

RESUMO

A literature survey reveals a prominent reduction in the concentration of Brønsted acid sites in hierarchically organized zeolites with increasing mesoporous or external surface area independent of the framework type or synthesis route; this suggests a common fundamental explanation. To determine the cause, nature, and impact of the underlying changes in aluminum speciation, this study combines a multitechnique analysis that integrates basic characterization, a detailed synchrotron XRD and multiple-quantum NMR spectroscopy assessment, and catalytic tests to correlate evolution of the properties with performance during successive steps in the preparation of hierarchical MFI-type zeolites by desilication. The findings, subsequently generalized to FAU- and BEA-type materials, identify the crucial impact of calcination on the protonic form, which is an integral step in the synthesis and regeneration of zeolite catalysts; on aluminum coordination; and the associated acidity trends.

11.
J Mech Behav Biomed Mater ; 51: 50-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26210548

RESUMO

Ceramic cements are good candidates for the stabilization of fractured bone due to their potential ease of application and biological advantages. New formulations of ceramic cements have been tested for their mechanical properties, including strength, stiffness, toughness and durability. The changes in the mechanical properties of a soluble cement (calcium sulfate) upon water-saturation (saturation) was reported in our previous study, highlighting the need to test ceramic cements using saturated samples. It is not clear if the changes in the mechanical properties of ceramic cements are exclusive to soluble cements. Therefore the aim of the present study was to observe the changes in the mechanical properties of soluble and insoluble ceramic cements upon saturation. A cement with high solubility (calcium sulfate dihydrate, CSD) and a cement with low solubility (dicalcium phosphate dihydrate, DCPD) were tested. Three-point bending tests were performed on four different groups of: saturated CSD, non-saturated CSD, saturated DCPD, and non-saturated DCPD samples. X-ray diffraction analysis and scanning electron microscopy were also performed on a sample from each group. Flexural strength, effective flexural modulus and flexural strain at maximum stress, lattice volume, and crystal sizes and shape were compared, independently, between saturated and non-saturated groups of CSD and DCPD. Although material dissolution did not occur in all cases, all calculated mechanical properties decreased significantly in both CSD and DCPD upon saturation. The results indicate that the reductions in the mechanical properties of saturated ceramic cements are not dependent on the solubility of a ceramic cement. The outcome raised the importance of testing any implantable ceramic cements in saturated condition to estimate its in vivo mechanical properties.


Assuntos
Cimentos Ósseos/química , Cerâmica/química , Fenômenos Mecânicos , Água/química , Teste de Materiais , Solubilidade , Estresse Mecânico
12.
Angew Chem Int Ed Engl ; 53(48): 13210-4, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25284344

RESUMO

Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings.

13.
Angew Chem Int Ed Engl ; 53(27): 7048-52, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24825119

RESUMO

Hydrolysis of germanosilicate zeolites with the IWW structure shows two different outcomes depending on the composition of the starting materials. Ge-rich IWW (Si/Ge=3.1) is disassembled into a layered material (IPC-5P), which can be reassembled into an almost pure silica IWW on treatment with diethoxydimethylsilane. Ge-poor IWW (Si/Ge=6.4) is not completely disassembled on hydrolysis, but retains some 3D connectivity. This structure can be reassembled into IWW by incorporation of Al to fill the defects left when the Ge is removed.

14.
ChemSusChem ; 6(12): 2369-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24106178

RESUMO

Herein, the first comparison of the mechanisms of glucose-to-fructose isomerization in aqueous media enabled by homogeneous (CrCl3 and AlCl3 ) and heterogeneous catalysts (Sn-beta) by using isotopic-labeling studies is reported. A pronounced kinetic isotope effect (KIE) was observed if the deuterium label was at the C2 position, thus suggesting that a hydrogen shift from the C2 to C1 positions was the rate-limiting step with the three catalysts. (13) C and (1) H NMR spectroscopic investigations confirmed that an intra-hydride-transfer reaction pathway was the predominant reaction channel for all three catalysts in aqueous media. Furthermore, the deuterium atom in the labeled glucose could be mapped onto hydroxymethylfurfural and formic acid through reactions that followed the isomerization step in the presence of Brønsted acids. In all three catalysts, the active site appeared to be a bifunctional Lewis-acidic/Brønsted-basic site, based on a speciation model and first-principles calculations. For the first time, a mechanistic similarities between the homogeneous and heterogeneous catalysis of aldose-to-ketose isomerization is established and it is suggested that learning from homogeneous catalysis could assist in the development of improved heterogeneous catalysts.


Assuntos
Frutose/química , Glucose/química , Cloreto de Alumínio , Compostos de Alumínio/química , Catálise , Cloretos/química , Compostos de Cromo/química , Isomerismo , Zeolitas/química
15.
Phys Chem Chem Phys ; 14(3): 1117-20, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22134383

RESUMO

Proper combination of template and optimized reaction conditions provides zeolite FER with homogeneous distribution of Al in the framework; this results in a new zeolite adsorbent exhibiting a constant heat of CO(2) adsorption.

16.
Dalton Trans ; 40(32): 8125-31, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21766117

RESUMO

Zn atoms have been incorporated into the STA-1 microporous framework (SAO framework type) for the first time. Pure Zn-containing STA-1 aluminophosphate has been obtained in the presence of either (S)-(-)-N-benzylpyrrolidine-2-methanol (BPM) or benzylpyrrolidine (BP) as structure-directing agent. Characterisation results have demonstrated that the organic molecules remain intact within the microporous framework after the hydrothermal treatment. The X-ray diffraction pattern has been indexed in the tetragonal space group I ̅4m2 (a = 13.7828(1) Å and c = 21.9444(4) Å). Chemical analysis and (31)P MAS NMR spectroscopy confirm the incorporation of ca. 4.5 Zn atoms per unit cell by isomorphous substitution of Al. This large-pore aluminophosphate has one of the lowest framework densities among the known zeolite structures, and is therefore of potential interest for applications in adsorption or catalytic processes involving bulky molecules.

17.
Chem Commun (Camb) ; 46(12): 2073-5, 2010 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-20221496

RESUMO

A computational study is performed to rationalize the effect of the organic template molecules used in the synthesis of zeolites on their catalytic behaviour. Apart from being structure-directing, these molecules influence the location of heteroatoms. Molecules bearing acidic protons susceptible to forming H-bonds with framework oxygens show the strongest dopant-siting direction.

18.
J Am Chem Soc ; 131(45): 16509-24, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19852487

RESUMO

Fluorescence spectroscopy and a range of computer simulation techniques are used to study the structure directing effect of benzylpyrrolidine (BP) and (S)-(-)-N-benzylpyrrolidine-2-methanol (BPM) in the synthesis of nanoporous aluminophosphate frameworks with AFI (one-dimensional channels) and SAO (three-dimensional interconnected channels) topologies. We study the supramolecular chemistry of BP and BPM molecules in aqueous solution and compare it with the aggregation state of the molecules found when they are inside the AlPO nanopores after crystallization. The aggregation of the molecules within the structures can be explained by a combination of thermodynamic and kinetic effects. The former are given by the stability of the molecular species interacting with the oxide networks relative to their stability in solution; the latter depend on the aggregation behavior of the molecules in the synthesis gels prior to crystallization. Whereas BPM only forms one type of aggregate in solution, which has the appropriate conformation to match the empty channels of the forming nanoporous frameworks, BP forms aggregates with different molecular orientations, of which only one matches the framework interstices. This different supramolecular chemistry, together with the higher interaction of BPM with the oxide networks, makes BPM a better structure directing agent (SDA); it is also responsible for the higher incorporation of BPM as dimers in the frameworks, especially in the AFI structure, observed experimentally. The concentration of the SDA molecules in the gels, and so the density per volume of the SDAs, determines the exclusion zone from which the pores and/or cavities of the framework will arise, and so the porous network of the formed material. A clear relationship between the SDA density in solution and in the framework is observed, thus enabling an eventual control of the material density by adjusting the SDA concentration in the gels. The topological instability intrinsic to these open framework structures is compensated by a high host-guest interaction energy; the SAO topology is further stabilized by doping with Zn. Our computational results account for and rationalize all the effects observed experimentally, providing a complete picture of the mode of structure direction of these aromatic molecules in the synthesis of nanoporous aluminophosphates.


Assuntos
Compostos de Alumínio/síntese química , Nanoestruturas/química , Fosfatos/síntese química , Pirrolidinas/química , Compostos de Alumínio/química , Simulação por Computador , Modelos Químicos , Tamanho da Partícula , Fosfatos/química , Porosidade , Espectrometria de Fluorescência , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...