Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 328: 108414, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472187

RESUMO

The purpose of this review article is to describe the underlying methodology for successfully translating novel interfaces for electrical modulation of the peripheral nervous system (PNS) from basic design concepts to clinical applications and chronic human use. Despite advances in technologies to communicate directly with the nervous system, the pathway to clinical translation for most neural interfaces is not clear. FDA guidelines provide information on necessary evidence which should be generated and submitted to allow the agency evaluate safety and efficacy of a new medical device. However, a knowledge gap exists on translating neural interfaces from pre-clinical studies into the clinical domain. Our article is intended to inform the field on some of the key considerations for such a transition process specific to neural interfaces that may not be already covered by FDA guidances. This framework focuses on non-penetrating peripheral nerve stimulating electrodes that have been proven effective for motor and sensory neural prostheses and successfully transitioned from pre-clinical through first-in-human and chronic clinical deployment. We discuss the challenges of moving these neural interfaces along the translational continuum and ultimately through FDA approval for human feasibility studies. Specifically, we describe a translational process involving: quantitative human anatomy, neural modeling and simulation, acute intraoperative testing and verification, clinical demonstration with temporary percutaneous access, and finally chronic clinical deployment and functional performance. To clarify and demonstrate the importance of each step of this translational framework, we present case studies from electrodes developed at Case Western Reserve University (CWRU), specifically the spiral cuff, the Flat Interface Nerve Electrode (FINE), and the Composite FINE (C-FINE). In addition, we demonstrate that success along this translational pathway can be further expedited by: appropriate selection of well-characterized materials, validation of fabrication and sterilization protocols, well-implemented quality control measures, and quantification of impact on neural structure, health, and function. The issues and approaches identified in this review for the peripheral nervous system may also serve to accelerate the dissemination of any new neural interface into clinical practice, and consequently advance the performance, utility, and clinical value of new neural prostheses or neuromodulation systems.


Assuntos
Estimulação Elétrica/métodos , Eletrodos , Próteses Neurais , Neurociências/métodos , Sistema Nervoso Periférico , Pesquisa Translacional Biomédica/métodos , Estimulação Elétrica/instrumentação , Humanos , Neurociências/instrumentação , Pesquisa Translacional Biomédica/instrumentação
2.
J Neural Eng ; 15(5): 056002, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29855427

RESUMO

OBJECTIVE: Sensory input in lower-limb amputees is critically important to maintaining balance, preventing falls, negotiating uneven terrain, responding to unexpected perturbations, and developing the confidence required for societal participation and public interactions in unfamiliar environments. Despite noteworthy advances in robotic prostheses for lower-limb amputees, such as microprocessor knees and powered ankles, natural somatosensory feedback from the lost limb has not yet been incorporated in current prosthetic technologies. APPROACH: In this work, we report eliciting somatic sensation with neural stimulation delivered by chronically-implanted, non-penetrating nerve cuff electrodes in two transtibial amputees. High-density, flexible, 16-contact nerve cuff electrodes were surgically implanted for the selective activation of sensory fascicles in the nerves of the posterior thigh above the knee. Electrical pulses at safe levels were delivered to the nerves by an external stimulator via percutaneous leads attached to the cuff electrodes. MAIN RESULTS: The neural stimulation was perceived by participants as sensation originating from the missing limb. We quantitatively and qualitatively ascertained the intensity, modality as well as the location and stability of the perceived sensations. Stimulation through individual contacts within the nerve cuffs evoked repeatable sensations of various modalities and at discrete locations projected to the missing toes, foot and ankle, as well as in the residual limb. In addition, we observed a high overlap in reported locations between distal versus proximal cuffs suggesting that the same sensory responses could be elicited from more proximal points on the nerve. SIGNIFICANCE: Based on these findings, the high-density cuff technology is suitable for restoring natural sensation to lower-limb amputees and could be utilized in developing a neuroprosthesis with natural sensory feedback. The overlap in reported locations between proximal and distal cuffs indicates that our approach might be applicable to transfemoral amputees where distal muscles and branches of sciatic nerve are not available.


Assuntos
Amputados/reabilitação , Membros Artificiais , Próteses Neurais , Nervos Periféricos , Transtornos de Sensação/etiologia , Transtornos de Sensação/reabilitação , Idoso , Amputação Traumática , Estimulação Elétrica , Eletrodos , Humanos , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Membro Fantasma/reabilitação , Desenho de Prótese , Limiar Sensorial
3.
J Neuroeng Rehabil ; 14(1): 70, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693584

RESUMO

BACKGROUND: Electrical stimulation of the peripheral nerves has been shown to be effective in restoring sensory and motor functions in the lower and upper extremities. This neural stimulation can be applied via non-penetrating spiral nerve cuff electrodes, though minimal information has been published regarding their long-term performance for multiple years after implantation. METHODS: Since 2005, 14 human volunteers with cervical or thoracic spinal cord injuries, or upper limb amputation, were chronically implanted with a total of 50 spiral nerve cuff electrodes on 10 different nerves (mean time post-implant 6.7 ± 3.1 years). The primary outcome measures utilized in this study were muscle recruitment curves, charge thresholds, and percent overlap of recruited motor unit populations. RESULTS: In the eight recipients still actively involved in research studies, 44/45 of the spiral contacts were still functional. In four participants regularly studied over the course of 1 month to 10.4 years, the charge thresholds of the majority of individual contacts remained stable over time. The four participants with spiral cuffs on their femoral nerves were all able to generate sufficient moment to keep the knees locked during standing after 2-4.5 years. The dorsiflexion moment produced by all four fibular nerve cuffs in the active participants exceeded the value required to prevent foot drop, but no tibial nerve cuffs were able to meet the plantarflexion moment that occurs during push-off at a normal walking speed. The selectivity of two multi-contact spiral cuffs was examined and both were still highly selective for different motor unit populations for up to 6.3 years after implantation. CONCLUSIONS: The spiral nerve cuffs examined remain functional in motor and sensory neuroprostheses for 2-11 years after implantation. They exhibit stable charge thresholds, clinically relevant recruitment properties, and functional muscle selectivity. Non-penetrating spiral nerve cuff electrodes appear to be a suitable option for long-term clinical use on human peripheral nerves in implanted neuroprostheses.


Assuntos
Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Próteses Neurais , Nervos Periféricos , Nervo Femoral , Seguimentos , , Transtornos Neurológicos da Marcha/prevenção & controle , Humanos , Neurônios Motores , Fibras Musculares Esqueléticas , Doenças do Sistema Nervoso Periférico/reabilitação , Recrutamento Neurofisiológico , Nervo Tibial , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...