Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 53(17): 9095-105, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25144614

RESUMO

Metallodithiolate ligands are used to design heterobimetallic complexes by adduct formation through S-based reactivity. Such adducts of dinitrosyl iron were synthesized with two metalloligands, namely, Ni(bme-daco) and V≡O(bme-daco) (bme-daco = bismercaptoethane diazacyclooctane), and, for comparison, an N-heterocyclic carbene, namely, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (Imes), by cleavage of the (µ-I)2[Fe(NO)2]2 dimer of electronic configuration {Fe(NO)2}(9) (Enemark-Feltham notation). With Fe(NO)2I as Lewis acid acceptor, 1:1 adducts resulted for both the IMes·Fe(NO)2I, complex 2, and V≡O(bme-daco)·Fe(NO)2I, complex 4. The NiN2S2 demonstrated binding capability at both thiolates, with two Fe(NO)2I addenda positioned transoid across the NiN2S2 square plane, Ni(bme-daco)·2(Fe(NO)2I), complex 3. Enhanced binding ability was realized for the dianionic vanadyl dithiolate complex, [Et4N]2[V≡O(ema)], (ema = N,N'-ethylenebis(2-mercaptoacetamide)), which, unlike the neutral (V≡O)N2S2, demonstrated reactivity with the labile tungsten carbonyl complex, cis-W(CO)4(pip)2, (pip = piperidine), yielding [Et4N]2[V≡O(ema)W(CO)4], complex 1, whose ν(CO) IR values indicated the dianionic vanadyl metalloligand to be of similar donor ability to the neutral NiN2S2 ligands. The solid-state molecular structures of 1-4 were determined by X-ray diffraction analyses. Electron paramagnetic resonance (EPR) measurements characterize the {Fe(NO)2}(9) complexes in solution, illustrating superhyperfine coupling via the (127)I to the unpaired electron on iron for complex 2. The EPR characterizations of 3 [Ni(bme-daco)·2(Fe(NO)2I)] and 4 [V≡O(bme-daco)·Fe(NO)2I] indicate these complexes are EPR silent, likely due to strong coupling between paramagnetic centers. Within samples of complex 4, individual paramagnetic centers with localized superhyperfine coupling from the (51)V and (127)I are observed in a 3:1 ratio, respectively. However, spin quantitation reveals that these species represent a minor fraction (<10%) of the total complex and thus likely represent disassociated paramagnetic sites. Computational studies corroborated the EPR assignments as well as the experimentally observed stability/instability of the heterobimetallic DNIC complexes.

2.
Dalton Trans ; 43(1): 138-44, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24108061

RESUMO

Development of square planar cis-dithiolate nickel complexes as metallo S-donor ligands focuses on the synthesis and structures of gold(I) heterometallic clusters derived from assemblage with three NiN2S2 complexes: Ni(bme-daco), Ni(bme-dach) and Ni(ema)(2-) (bme-daco = (bismercaptoethanediazacyclooctane); bme-dach = bismercaptoethanediazacycloheptane; and ema = N,N'-ethylenebis-2-mercaptoacetamide). With Ph3PAuCl as the gold source, examples of simple S-aurolation retaining the PPh3 on Au(+) were obtained for [{Ni(bme-daco)}AuPPh3](+)Cl(-) and [{Ni(ema)}2Au4(PPh3)4], where the latter complex demonstrated unsupported aurophilic interactions between [{Ni(ema)}Au2(PPh3)2] units in its X-ray crystal structure (Au-Au = 3.054 and 3.127 Å). Three compounds containing fully-supported digold units with Au-Au distances in the aurophilic range of 3.11 to 3.13 Å were found as stair-step structures in which planar NiN2S2 step treads are connected by planar S2Au2S2 risers at ca. 90°: [{Ni(bme-daco)}2Au2](2+)(Cl(-))2; [{Ni(bme-dach)}2Au2](2+)(Cl(-))2; and (Et4N(+))2[{Ni(ema)}2Au2](2-). Electrochemical data from cyclic voltammograms demonstrated a positive shift in Ni(II/I) couples for the [{NiN2S2}xAuy] complexes as compared to the NiN2S2 precursors and a ca. 700 mV decrease in communication between multiple NiN2S2 units as compared to [{NiN2S2}2Ni](2+) analogues in slant chair conformation. The analogy between NiN2S2 metallodithiolate ligands and diphosphine ligands holds here as in other examples of inorganic and organometallic complexes.


Assuntos
Complexos de Coordenação/química , Ouro/química , Níquel/química , Compostos de Sulfidrila/química , Enxofre/química , Cristalografia por Raios X , Modelos Moleculares
3.
Inorg Chem ; 50(5): 1849-55, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21299197

RESUMO

The versatile N(2)S(2) tetradentate ligands (bme-daco)(2-), (bme-dach)(2-), and (ema)(4-) are known to accommodate many divalent transition-metal ions (M = Ni(II), Pd(II), Pt(II), Pb(II), Zn(II), Cd(II), Cu(II), and Fe(II)) while maintaining reactivity at the S-thiolate sites of the respective N(2)S(2)M complexes. The vanadyl ion, of interest for its pharmacological possibilities and its spin-label reporter properties for bioinorganic studies, also shows an affinity for such mixed nitrogen/sulfur-donor environments. Thus, (V≡O)(2+) analogues of a well-characterized series of N(2)S(2)Ni complexes have been prepared as mimics of possible N(2)S(2)(V≡O) formed from in vivo binding sites of the tripeptide motif, Cys-X-Cys. The nucleophilicity of the S-thiolate in these systems is explored with alkylating agents. IR [ν(VO)], electronic spectral, and electron paramagnetic resonance measurements are presented. X-ray diffraction studies of (bme-daco)(V≡O), (bme-dach)(V≡O), and [Et(4)N](2)[(ema)(V≡O)] further characterize the vanadyl complexes. A comparison of the spectral properties with the product of vanadyl interaction with the CGC tripeptide, the biological analogue of the tetraanionic N(2)S(2) ligand, is given.


Assuntos
Compostos de Vanádio/síntese química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Vanádio/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...