Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunology ; 143(3): 490-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24903615

RESUMO

Biological functions show rhythmic fluctuations with 24-hr periodicity regulated by circadian proteins encoded by the so-called 'clock' genes. The absence or deregulation of circadian proteins in mice leads to metabolic disorders and in vitro models have shown that the synthesis of pro-inflammatory cytokines by macrophages follows a circadian rhythm so showing a link between circadian rhythmicity, metabolism and immunity. Recent evidence reveals that mitochondrial shape, position and size, collectively referred to as mitochondrial dynamics, are related to both cell metabolism and immune function. However, studies addressing the simultaneous crosstalk between circadian rhythm, mitochondrial dynamics and cell immune function are scarce. Here, by using an in vitro model of synchronized murine peritoneal macrophages, we present evidence that the mitochondrial dynamics and the mitochondrial membrane potential (∆ψm ) follow a circadian rhythmic pattern. In addition, it is shown that the fusion of mitochondria along with high ∆ψm , indicative of high mitochondrial activity, precede the highest phagocytic and bactericidal activity of macrophages on Salmonella typhimurium. Taken together, our results suggest a timely coordination between circadian rhythmicity, mitochondrial dynamics, and the bactericidal capacity of macrophages.


Assuntos
Ritmo Circadiano/fisiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Dinâmica Mitocondrial/fisiologia , Animais , Células Cultivadas , Endocitose/imunologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/microbiologia , Potencial da Membrana Mitocondrial , Camundongos , Fagocitose/imunologia , Salmonella typhimurium/imunologia
2.
Rev Alerg Mex ; 54(4): 134-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18297853

RESUMO

The transfer factor (TF) was described in 1955 by S. Lawrence. In 1992 Kirkpatrick characterized the specific TF at molecular level. The TF is constituted by a group of numerous molecules, of low molecular weight, from 1.0 to 6.0 kDa. The 5 kDa fraction corresponds to the TF specific to antigens. There are a number of publications about the clinical indications of the TF for diverse diseases, in particular those where the cellular immune response is compromised or in those where there is a deficient regulation of the immune response. In this article we present our clinical and basic experiences, especially regarding the indications, usage and dosage of the TF. Our group demonstrated that the TF increases the expression of IFN-gamma and RANTES, while decreases the expression of osteopontine. Using animal models we have worked with M. tuberculosis, and with a model of glioma with good therapeutic results. In the clinical setting we have worked with herpes zoster, herpes simplex type I, herpetic keratitis, atopic dermatitis, osteosarcoma, tuberculosis, asthma, post-herpetic neuritis, anergic coccidioidomycosis, leishmaniasis, toxoplasmosis, mucocutaneous candidiasis, pediatric infections produced by diverse pathogen germs, sinusitis, pharyngitis, and otits media. All of these diseases were studied through protocols which main goals were to study the therapeutic effects of the TF, and to establish in a systematic way diverse dosage schema and time for treatment to guide the prescription of the TF.


Assuntos
Fator de Transferência/uso terapêutico , Animais , Humanos , Imunoterapia , Fator de Transferência/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...