Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spine Deform ; 4(1): 65-69, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27852503

RESUMO

BACKGROUND: Rod fracture is a common complication of growing rods and can result in loss of correction, patient discomfort, and unplanned revision surgery. The ability to quantitate rod integrity at each lengthening would be advantageous to avoid this complication. We investigate the feasibility of applying structural health monitoring to evaluate the integrity of growing rods in vitro. METHODS: Single-rod titanium 4.5-mm growing rod constructs (n = 9), one screw proximally and one distally connected by in-line connectors, were assembled with pedicle screws fixed in polyethylene blocks. Proximal and distal ends were loaded and constructs subjected to cyclic axial compression (0-100 N at 1 Hz), with incrementally increasing maximum compressive loads of 10 N every 9k cycles until failure. Four piezoceramic transducers (PZTs) were mounted along the length the constructs to interrogate the integrity of the rods with an ultrasonic, guided lamb wave approach. Every 9k cycles, an 80 V excitatory voltage was applied to a PZT to generate high-frequency vibrations, which, after propagating through the construct, was detected by the remaining PZTs. Amplitude differences between pre- and postload waveform signals were calculated until rod failure. RESULTS: Average construct lifetime was 88,991 ± 13,398 cycles. All constructs failed due to rod fracture within 21 mm (mean = 15 ± 4.5 mm) of a screw or connector. Amplitude differences between pre- and postload increased in a stepwise fashion as constructs were cycled. Compared to baseline, we found a 1.8 ± 0.6-fold increase in amplitude 18k cycles before failure, a 2.2 ± 1.0-fold increase in amplitude 9k cycles before failure, and a 2.75 ± 1.5-fold increase in amplitude immediately before rod fracture. CONCLUSION: We describe a potential method for assessing the structural integrity of growing rods using ultrasonic structural health monitoring. These preliminary data demonstrate the ability of periodic rod assessment to detect structural changes in cycled growing rods, which appear to correspond to subclinical rod fatigue before rod fracture.


Assuntos
Nível de Saúde , Parafusos Pediculares , Escoliose/diagnóstico por imagem , Fusão Vertebral , Ultrassom , Fenômenos Biomecânicos , Humanos , Vértebras Lombares , Teste de Materiais , Vértebras Torácicas , Titânio
2.
Bioinspir Biomim ; 5(4): 045009, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21098960

RESUMO

This paper details the development of a nano-scale (>15 cm) robotic samara, or winged seed. The design of prototypes inspired by naturally occurring geometries is presented along with a detailed experimental process which elucidates similarities between mechanical and robotic samara flight dynamics. The helical trajectories of a samara in flight were observed to differ in-flight path and descent velocity. The body roll and pitch angular rates for the differing trajectories were observed to be coupled to variations in wing pitch, and thus provide a means of control. Inspired by the flight modalities of the bio-inspired samaras, a robotic device has been created that mimics the autorotative capability of the samara, whilst providing the ability to hover, climb and translate. A high-speed camera-based motion capture system is used to observe the flight dynamics of the mechanical and robotic samara. Similarities in the flight dynamics are compared and discussed as it relates to the design of the robotic samara.


Assuntos
Materiais Biomiméticos , Modelos Biológicos , Nanotecnologia/instrumentação , Sementes/fisiologia , Animais , Simulação por Computador , Desenho Assistido por Computador , Fontes de Energia Elétrica , Desenho de Equipamento , Robótica/instrumentação
3.
J Acoust Soc Am ; 112(6): 2849-57, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12509006

RESUMO

This paper investigates the feasibility of sensing damage emanating from rotating drivetrain elements such as bearings, gear teeth, and drive shafts via airborne paths. A planar phased acoustic array is evaluated as a potential fault detection scheme for detecting spatially filtered acoustic signatures radiating from gearbox components. Specifically, the use of beam focusing and steering to monitor individual tooth mesh dynamics is analyzed taking into consideration the constraints of the array/gearbox geometry and the spectral content of typical gear noise. Experimental results for a linear array are presented to illustrate the concepts of adaptive beam steering and spatial acoustic filtering. This feasibility study indicates that the planar array can be used to track the acoustic signatures at higher harmonics of the gear mesh frequency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...