Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Theranostics ; 14(6): 2379-2395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646644

RESUMO

Background: It is poorly understood what cellular types participate in ductular reaction (DR) and whether DR facilitates recovery from injury or accelerates hepatic fibrosis. The aim of this study is to gain insights into the role of hepatic progenitor cell (HPC)-originated DR during fibrotic progression. Methods: DR in liver specimens of PBC, chronic HBV infection (CHB) or NAFLD, and four rodent fibrotic models by different pathogenic processes was evaluated. Gli1 expression was inhibited in rodent models or cell culture and organoid models by AAV-shGli1 or treating with GANT61. Results: Severity of liver fibrosis was positively correlated with DR extent in patients with PBC, CHB or NAFLD. HPCs were activated, expanded, differentiated into reactive cholangiocytes and constituted "HPC-originated DR", accompanying with exacerbated fibrosis in rodent models of HPC activation & proliferation (CCl4/2-AAF-treated), Μdr2-/- spontaneous PSC, BDL-cholestatic fibrosis or WD-fed/CCl4-treated NASH-fibrosis. Gli1 expression was significantly increased in enriched pathways in vivo and in vitro. Enhanced Gli1 expression was identified in KRT19+-reactive cholangiocytes. Suppressing Gli1 expression by administration of AAV-shGli1 or GANT61 ameliorated HPC-originated DR and fibrotic extent. KRT19 expression was reduced after GANT61 treatment in sodium butyrate-stimulated WB-F344 cells or organoids or in cells transduced with Gli1 knockdown lentiviral vectors. In contrast, KRT19 expression was elevated after transducing Gli1 overexpression lentiviral vectors in these cells. Conclusions: During various modes of chronic injury, Gli1 acted as an important mediator of HPC activation, expansion, differentiation into reactive cholangiocytes that formed DR, and subsequently provoked hepatic fibrogenesis.


Assuntos
Proteínas Hedgehog , Cirrose Hepática , Transdução de Sinais , Células-Tronco , Proteína GLI1 em Dedos de Zinco , Animais , Feminino , Humanos , Masculino , Camundongos , Ratos , Diferenciação Celular , Modelos Animais de Doenças , Proteínas Hedgehog/metabolismo , Hepatite B Crônica/metabolismo , Hepatite B Crônica/patologia , Hepatite B Crônica/complicações , Fígado/patologia , Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Piridinas/farmacologia , Pirimidinas/farmacologia , Células-Tronco/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética
2.
J Integr Med ; 22(2): 188-198, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472011

RESUMO

OBJECTIVE: This study explores the mechanism of action of Danhongqing formula (DHQ), a compound-based Chinese medicine formula, in the treatment of cholestatic liver fibrosis. METHODS: In vivo experiments were conducted using 8-week-old multidrug resistance protein 2 knockout (Mdr2-/-) mice as an animal model of cholestatic liver fibrosis. DHQ was administered orally for 8 weeks, and its impact on cholestatic liver fibrosis was evaluated by assessing liver function, liver histopathology, and the expression of liver fibrosis-related proteins. Real-time polymerase chain reaction, Western blot, immunohistochemistry and other methods were used to observe the effects of DHQ on long non-coding RNA H19 (H19) and signal transducer and activator of transcription 3 (STAT3) phosphorylation in the liver tissue of Mdr2-/- mice. In addition, cholangiocytes and hepatic stellate cells (HSCs) were cultured in vitro to measure the effects of bile acids on cholangiocyte injury and H19 expression. Cholangiocytes overexpressing H19 were constructed, and a conditioned medium containing H19 was collected to measure its effects on STAT3 protein expression and cell activation. The intervention effect of DHQ on these processes was also investigated. HSCs overexpressing H19 were constructed to measure the impact of H19 on cell activation and assess the intervention effect of DHQ. RESULTS: DHQ alleviated liver injury, ductular reaction, and fibrosis in Mdr2-/- mice, and inhibited H19 expression, STAT3 expression and STAT3 phosphorylation. This formula also reduced hydrophobic bile acid-induced cholangiocyte injury and the upregulation of H19, inhibited the activation of HSCs induced by cholangiocyte-derived conditioned medium, and decreased the expression of activation markers in HSCs. The overexpression of H19 in a human HSC line confirmed that H19 promoted STAT3 phosphorylation and HSC activation, and DHQ was able to successfully inhibit these effects. CONCLUSION: DHQ effectively alleviated spontaneous cholestatic liver fibrosis in Mdr2-/- mice by inhibiting H19 upregulation in cholangiocytes and preventing the inhibition of STAT3 phosphorylation in HSC, thereby suppressing cell activation. Please cite this article as: Li M, Zhou Y, Zhu H, Xu LM, Ping J. Danhongqing formula alleviates cholestatic liver fibrosis by downregulating long non-coding RNA H19 derived from cholangiocytes and inhibiting hepatic stellate cell activation. J Integr Med. 2024; 22(2): 188-198.


Assuntos
Colestase , RNA Longo não Codificante , Humanos , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Meios de Cultivo Condicionados/metabolismo , Camundongos Knockout , Colestase/tratamento farmacológico , Colestase/genética , Colestase/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fígado/metabolismo
3.
Huan Jing Ke Xue ; 45(3): 1233-1242, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471840

RESUMO

Promoting regions with favorable conditions to take the lead in reaching a carbon peak is an inevitable step towards achieving the dual carbon goals under the "nationwide coordinated action" plan. Considering the differences among Chinese provinces, this study measured the peaking pressure of each province based on the spatial distribution of carbon emissions. We then constructed a provincial peaking capacity evaluation system based on five dimensions, namely, peaking pressure, emission reduction status, economic development, policy support, and resource endowment, to comprehensively evaluate the carbon peaking capacity of 30 provincial administrative regions in China, excluding Hong Kong, Macau, Taiwan, and Tibet, using the entropy value method to determine the index weights. The 30 provinces were divided into five peaking tiers according to the evaluation results. The results showed that:① 18 regions, such as Hainan and Beijing, displayed a surplus in carbon emission space; eight regions, including Hebei and Shandong, showed a deficit in carbon emission space; and the carbon emission spaces allocated to Zhejiang, Anhui, Henan, and Hubei were comparable to their respective actual emissions. ② Developed regions generally had a higher carbon peaking capacity than that of less developed regions, with Beijing and Shanghai showing outstanding carbon peaking capacity, whereas Jiangxi and Guizhou had more room to improve their capacity. Finally, differentiated peaking targets and priority actions were proposed according to the provinces' different peaking tiers and local conditions.

4.
Huan Jing Ke Xue ; 44(7): 3649-3659, 2023 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-37438264

RESUMO

As the key unit of greenhouse gas emission sources, cities have the most direct and fundamental significance to achieve the national carbon peaking carbon neutrality goal. In order to evaluate the current performance of urban carbon peaking and neutrality, a set of urban peaking and carbon neutrality action index evaluation systems consisting of three criterion layers, seven elements, and fourteen specific index layers were developed based on the analytic hierarchy process considering the preferences of decision makers, through the steps of influencing factor determination, indicator selection, and scoring principle determination, as well the indicator weightings. Thus, a relatively comprehensive scientific evaluation method was formed to fully evaluate the attitude of the government towards the goal of carbon peaking and neutrality, the state of social economy, energy consumption, industrial structure, transportation, and other aspects, as well as the actual effect of emission reduction efficiency and trends. Through the central city evaluation application study, it was found that the first-tier economically developed and low-carbon pilot cities had a more outstanding comprehensive performance in reaching the peak and neutrality. The comprehensive scores of Beijing, Shenzhen, Wuhan, Shanghai, Qingdao, Guangzhou, Chengdu, Xiamen, Kunming, and Lanzhou all exceeded 60 points. Beijing, Xiamen, Ningbo, Shenzhen, and Qingdao had significant climate ambitions, whereas Haikou, Guangzhou, Chengdu, Nanning, and Beijing had a better low-carbon status. Kunming, Lanzhou, Luoyang, Daqing, Jilin, and other cities showed significant emission reduction trends. Most cities still had problems such as insufficient willingness to reach the peak and lack of statistical information disclosure system. The evaluation method could be optimized by improving the index system, updating the empowerment, and forming the annual evaluation mechanism next step. It is suggested to formulate the local carbon reduction work plan by coordinating the whole country at different levels, improve the urban energy and greenhouse gas statistics and information disclosure system, and organize the carbon peaking pilot construction in areas where conditions permit.

5.
J Food Biochem ; 46(12): e14463, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36314441

RESUMO

Resveratrol, which is a natural polyphenol found in grapes, berries, peanuts, and medicinal plants, has previously been reported to perform several biological functions, including inhibition of hepatic fibrosis. Activated hepatic stellate cells (HSCs) are the major cellular source of matrix protein-secreting myofibroblasts, which are the major drivers of liver fibrogenesis. Numerous studies on the protective effects of resveratrol against liver fibrosis have focused on the inhibition of HSC activation. Although the underlying mechanisms remain to be fully elucidated, the regulation of autophagy and apoptosis might be intimately related. The mouse HSC line JS1 was stimulated with resveratrol to assess the mechanism and relationship between autophagy and apoptosis. Resveratrol modulated JS1 cell viability in a dose-dependent manner. Moreover, resveratrol inhibited JS1 cell activation and induced autophagy and apoptosis. This antifibrotic effect was attenuated when autophagy was inhibited using chloroquine (CQ) or 3-methyladenine (3-MA) or when apoptosis was inhibited using Z-VAD-FMK. Furthermore, whether the Sirtuin1 (SIRT1) and c-Jun N-terminal kinase (JNK) signaling pathways were associated with the resveratrol-mediated induction of autophagy and apoptosis in JS1 cells was examined. The SIRT1 inhibitor EX527 reversed autophagy, and the JNK inhibitor SP600125 reversed both autophagy and apoptosis induced by resveratrol. These findings suggest that the SIRT1 and JNK signaling pathways may be involved in the resveratrol-mediated inhibition of HSC activation by regulating autophagy and apoptosis. SIRT1 may be responsible for inducing autophagy, while JNK affects both autophagy and apoptosis. This study highlighted autophagy and apoptosis as therapeutic targets by which resveratrol can attenuate fibrosis. PRACTICAL APPLICATIONS: Resveratrol, which is a natural polyphenol found in grapes, berries, peanuts, and medicinal plants, has previously been reported to inhibit hepatic fibrosis. Since activated HSCs are the major drivers of liver fibrogenesis, many studies on the anti-hepatic fibrosis effects of resveratrol have focused on inhibiting HSC activation. The objective of this study was to evaluate the inhibitory effect of resveratrol on HSC activation and focused on the mechanism by which resveratrol modulated autophagy and apoptosis in JS1 cells, a mouse immortalized HSC line. It was shown that resveratrol inhibited HSC activation by inducing autophagy and apoptosis in a dose-dependent manner, and the mechanism may be associated with the SIRT1 and JNK signaling pathways. This study highlighted autophagy and apoptosis as therapeutic targets by which resveratrol can attenuate fibrosis. These findings may provide a new framework for understanding the mechanism by which resveratrol inhibits HSC activation.


Assuntos
Sistema de Sinalização das MAP Quinases , Sirtuína 1 , Camundongos , Animais , Resveratrol/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Autofagia , Apoptose
6.
Front Pharmacol ; 13: 938856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991894

RESUMO

In liver fibrosis, transforming growth factor-ß1 (TGF-ß1) can stimulate autophagy and activation of hepatic stellate cells (HSCs). Autophagy, playing a crucial role in HSCs activation, is related to liver fibrosis. Increasing evidence have suggested that antifibrosis effects of salvianolic acid B (Sal B) and their mechanisms of action, however, remain unclear. The aim of the article is to understand the role of Sal B in HSCs autophagy in liver fibrosis. Herein, we demonstrated that inducing TGF-ß1 led to dramatic increase in autophagosome formation and autophagic flux in JS1 and LX2, which was mediated through the ERK, JNK, and p38 MAPK cascades. TGF-ß1 significantly increased the protein of autophagy and liver fibrosis, including LC3BⅡ, ATG5, α-SMA, and Col.I; Sal B inhibits JS1 autophagy and activation by inhibiting the formation of autophagosomes and autophagic flux. Sal B significantly decreased the LC3BⅡ, ATG5, α-SMA, and Col.I protein expressions; pretreatment with autophagy inhibitors, chloroquine (CQ) and 3-methyladenine (3-MA) or silencing ATG7 further increase these reductions. However, pretreatment with autophagy agonist, rapamycin (Rapa), or overexpressed ATG5 attenuated this decrease. To further assess the importance of this mechanism, the antibody chip was used to detect the change of phosphorylation protein expression of the MAPK signaling pathway after treating JS1 with Sal B. Eleven differentially expressed proteins were verified. Sal B inhibits activation and autophagy of JS1 induced by TGF-ß1 through downregulating the ERK, p38, and JNK signaling pathways, as demonstrated by downregulating p-ERK, p-JNK, and p-p38 MAPK protein expressions. In conclusion, Sal B inhibits autophagy and activation induced by TGF-ß1 of HSCs possibly by downregulating the MAPK pathway.

7.
Mol Med Rep ; 25(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119084

RESUMO

The aim of the present study was to investigate the molecular mechanisms of atractylon in the inhibition of invasion and migration of hepatic cancer cells. High­throughput sequencing was used to compare the expression of long non­coding (lnc)RNAs between hepatic carcinoma and healthy controls. A competing endogenous RNA network was constructed. The top significantly differentially expressed lncRNAs were screened and verified by reverse transcription­quantitative PCR in vitro and in vivo. Small interfering (si)RNA against thymopoietin­antisense 1 (TMPO­AS1) or coiled­coil domain­containing 183­antisense 1 (CCDC183­AS1) overexpression (oe) vectors were transfected into cells following atractylon treatment. Wound healing and Matrigel assays were used to determine the effects of migration and invasion, respectively. Western blot analysis was used to detect the expression levels of invasion­ and migration­related proteins, including N­cadherin, E­cadherin and MMP­2. Flow cytometry analysis was used to detect apoptosis. Based on transcriptome sequencing and analysis, the top seven upregulated [(FAM201A, RP11­640M9.2, AL589743.1, TMEM51­AS1, clathrin heavy chain­like 1 (CLTCL1), TMPO­AS1 and LINC00652] and top six downregulated lncRNAs (RP11­465B22.5, CCDC183­AS1, TCONS_00072529, RP11­401F2.3, RP11­290F20.1 and TCONS_00070568) were identified. Only TMPO­AS1 and CCDC183­AS1 were differently regulated by atractylon in vivo. The proliferative ability of HepG2 liver cancer cells decreased, whereas the apoptotic rate improved after atractylon treatment. Notably, the invasive and migratory ability of HepG2 cells significantly declined. In addition, siTMPO­AS1 and oeCCDC183­AS1 reduced the effect of atractylon in vitro. Atractylon was demonstrated to regulate the expression of TMPO­AS1 and CCDC183­AS1 and inhibited the invasion and migration of liver cancer cells. Thus, TMPO­AS1 and CCDC183­AS1 may be potential targets for diagnosis and treatment of hepatic carcinoma.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Movimento Celular/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Sesquiterpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/farmacologia , Análise de Sequência de RNA , Sesquiterpenos/uso terapêutico
8.
Talanta ; 239: 123117, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890942

RESUMO

Silver Nanoparticles (Ag-NPs), an emerging type of pollutant, might occur various physical and chemical transformations, which would affect its environmental fate, transformation and biological effects. Sulfurization is the most common conversion of Ag-NPs, accompanied by the formation of nano-silver sulfide (Ag2S-NPs). The method of Ag2S-NPs analysis and characterization is of great significance for assessing the environmental risks of Ag. In this study, cloud point extraction (CPE) and Single Particle-Inductively Coupled Plasma-Mass Spectrometry (SP-ICP-MS) were used in combination to establish a simple and reliable analysis method to quantify Ag2S-NPs in water, with the morphology unchanged. Non-Ag2S-NPs were dissociated into Ag+ firstly, and Ag2S-NPs and Ag+ were separated by CPE, followed by SP-ICP-MS analysis. The extraction rate based on particle number concentration was between (76.19 ± 0.56) % to (106.35 ± 0.00) % in environmental waters. Compared with the (76.96 ± 2.18) nm Ag2S-NPs spiked, the particle size extracted increased slightly with (94.19 ± 2.72) nm- (97.25 ± 0.22) nm as the large-size Ag2S-NPs originally presented in waters, instead of agglomeration. This method could be generally applicable to the analysis of Ag2S-NPs in waters, and provide ideas for other metal sulfide nanoparticles (MS-NPs), which has certain significance.


Assuntos
Nanopartículas Metálicas , Espectrometria de Massas , Tamanho da Partícula , Prata , Sulfetos , Água
9.
Zhongguo Zhong Yao Za Zhi ; 46(11): 2865-2870, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34296587

RESUMO

In order to investigate the effect of salidroside on inhibiting liver fibrosis and its relationship with CXC chemokine ligand 16(CXCL16) in vivo and in vitro, totally 45 C57 BL/6 J male mice were randomly divided into normal group, model group and salidroside group, with 15 mice in each group. The mice in model group and salidroside group were injected intraperitoneally with 15% carbontetrachloride(CCl_4) olive oil solution to establish liver fibrosis model, and the mice in normal group were injected intraperitoneally with the same dose of olive oil. Salidroside group was given with 100 mg·kg~(-1 )salidroside by gavage, while the normal group and model group received the same amount of double distilled water by gavage. All mice were sacrificed after 5 weeks of intragastric administration. The pathological changes of mouse liver were observed by hematoxylin-eosin(HE) staining, and the degree of liver fibrosis was observed by sirius red staining. The protein expressions of collagen Ⅰ(ColⅠ), α-smooth muscle actin(α-SMA), fibronectin(FN), CXCL16, phosphorylated Akt(p-Akt), Akt in liver tissues were detected by Western blot. Hepatic stellate cell line JS 1 was cultured in vitro and divided into control group, model group(100 µg·L~(-1) CXCL16) and salidroside group(100 µg·L~(-1) CXCL16+1×10~(-5) mol·L~(-1) salidroside). Cell migration was detected by cell scratch, the mRNA expressions of ColⅠ and α-SMA were detected by RT-PCR, and the protein expressions of p-Akt and Akt were detected by Western blot. As compared with the normal group, the protein expressions of ColⅠ, α-SMA, FN, CXCL16, and p-Akt in the model group were significantly increased, and salidroside could reduce the expression of these indicators(P<0.05 or P<0.01). In vitro, CXCL16 could promote the migration of JS 1, increase the mRNA expressions of ColⅠ and α-SMA in JS 1, and enhance Akt phosphorylation in JS 1(P<0.05 or P<0.01). As compared with the model group, salidroside could inhibit the migration of JS 1 induced by CXCL16(P<0.05), and reduce the high expression of ColⅠ and α-SMA mRNA and the phosphorylation of Akt in JS 1 induced by CXCL16(P<0.05). In conclusion, salidroside might attenuate CCl_4-induced liver fibrosis in mice by inhibiting the migration, activation and Akt phosphorylation of hepatic stellate cells induced by CXCL16.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Animais , Tetracloreto de Carbono , Quimiocina CXCL16 , Glucosídeos , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Masculino , Camundongos , Fenóis
10.
Front Pharmacol ; 12: 677810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054552

RESUMO

Sphingosine kinase 1 (SphK1)/Sphingosine-1-phosphate (S1P)/S1PRs signaling pathway is known to involve the advancement of liver fibrosis. Exosomal SphK1 promotes hepatic stellate cells (HSC) migration. Salidroside (Sal) inhibits liver fibrosis, but its mechanism is yet to be elucidated. This study was to explore the influences of Sal on the SphK/S1P/S1PRs signaling pathway in liver fibrosis induced by carbon tetrachloride (CCl4) in vivo, and investigated the mechanism of Sal affecting the migration and activation of HSC triggered by exosomal SphK1 in vitro. Our data showed that Sal reduced the activities of alanine transaminase (ALT), aspartate aminotransferase (AST) in serum, and hydroxyproline (Hyp) content in the liver tissue. Sal subdued the expression of α-smooth muscle actin (α-SMA), fibronectin (FN) and type I collagen (Col I) of the liver. Sal also reduced mitochondria-induced hepatocyte apoptosis and to inhibit JNK activation. Furthermore, Sal remarkably eradicated the influence of SphK1, SphK2, S1P, and S1PRs triggered by CCl4, whether stimulating or hindering. Compared with serum-derived exosomes from model group mice, serum-derived exosomes from Sal group mice expressed lower SphK1 and reduced JS 1 (mouse HSC cell line) migration. In addition, Sal was also observed to subdue Col I expression, AKT activation, and LX-2 migration induced by exosomal SphK1 from SK-HEP-1 (a kind of liver sinusoidal endothelial cells (LSEC) cell line). In conclusion, Sal could effectively alleviate liver injury, hepatocyte apoptosis, and liver fibrosis in vivo, providing supports that the protective effects of Sal might be realized by suppressing JNK activation and modulating the SphK/S1P/S1PRs axis. In vitro, it was observed that Sal might alleviate LX-2 migration and activation induced by exosomal SphK1 by inhibiting the AKT activation.

11.
Int J Mol Med ; 47(1): 256-266, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33236148

RESUMO

Transforming growth factor ß1 (TGF­ß1) is one of the most important fibrogenic factors promoting the activation of hepatic stellate cells (HSCs). Autophagy is a process used by cells to degrade and recycle cellular proteins. Although TGF­ß1 induces autophagy in several other cellular systems, the association between its effect on fibrogenesis and autophagy in HSCs have not been determined. Liver tissues from C57BL/6 mice and the mouse HSC line JS1 were analyzed. Acute and chronic liver injury models were induced by carbon tetrachloride (CCl4), and JS1 cells were stimulated by TGF­ß1 to assess the mechanism and relationship between autophagy and fibrosis. Liver tissues from acute and chronic injury models induced by CCl4 demonstrated evidence of increased autophagic activity, as assessed by the expression of the microtubule­associated protein 1 light chain 3BII protein. TGF­ß1 stimulated the activation of JS1 cells and simultaneously increased autophagy flux. However, this effect was attenuated when autophagy was inhibited using chloroquine, 3­methyladenine or lentiviral short hairpin RNA­mediated knockdown of autophagy­related gene 7. Furthermore, whether MAPK, including ERK, JNK and p38 MAPK cascades were associated with TGF­ß1­induced autophagy in JS1 cells was determined. Subsequently, it was shown that the ERK inhibitor, PD98059, and JNK inhibitor, SP600125, were able to reverse TGF­ß1­induced autophagy and fibrosis. The results of the present study suggest that TGF­ß1­induced autophagy is involved in the activation of JS1 cells, possibly through activation of the ERK and JNK signaling pathways.


Assuntos
Autofagia , Intoxicação por Tetracloreto de Carbono , Células Estreladas do Fígado/metabolismo , Sistema de Sinalização das MAP Quinases , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Estreladas do Fígado/patologia , Masculino , Camundongos
12.
Artigo em Inglês | MEDLINE | ID: mdl-32454856

RESUMO

AIM: To investigate the mechanisms of Fuzheng Huayu (FZHY) Capsule in the treatment of hepatitis B (HBV)- associated fibrosis, HBV patients were divided into two groups, 50 cases were in the nucleotide analogues (NAs) group, while additional 50 cases were in the NAs + FZHY group. METHODS: We assessed the curative effects of antifibrosis through liver function, FibroScan test, and liver biopsy and detected the ratio of lymphocyte subsets by flow cytometry. Peripheral blood lymphocyte and CD8+T, CD4+T, and natural killer cell subsets collected from patients were cocultured with LX-2 cells. Activation of LX-2 cells, production of the extracellular matrix, apoptosis, and proliferation of LX-2 cells were determined. Chronic liver injury models were established by ConA treatment. RESULTS: It is evident that FZHY treatment significantly increased the percentage of NK cells, the rate of death, and apoptosis of LX-2 cells and decreased the FibroScan liver stiffness measurement value. The expressions of α-SMA and procollagen type I mRNA in LX-2 cells of the FZHY treatment group as downregulated when they were cocultured with lymphocytes compared to those from the NAs group. The proliferation of LX-2 cells in the FZHY treatment group was inhibited compared to that in the NAs group. In a mouse model of hepatic fibrosis, PBLs and IHLs from ConA exposure plus FZHY treatment inhibited the ability of JS-1 cells to express α-SMA. CONCLUSIONS: FZHY Capsule improved the disordered cellular immunity and postponed liver fibrosis possibly through inhibiting the interaction between lymphocyte and hepatic stellate cells.

13.
Front Pharmacol ; 11: 216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210812

RESUMO

BACKGROUND: Currently, active ingredients of herbal extracts that can suppress lipid accumulation in the liver have been considered a potential treatment option for non-alcoholic fatty liver disease. METHODS: Steatosis rat model was created by high fat and high sucrose diet feeding and treated with oxymatrine (OMT). Serum biochemical parameters, liver histology and lipid profiles were examined. Hepatic differentially expressed proteins (DEPs) which were significantly changed by OMT treatment were identified by iTRAQ analysis. The expressions of representative DEPs, Sirt1 and AMPKα were evaluated by western blotting. RESULTS: OMT significantly reduced the body weight and liver weight of steatosis animals, decreased the serum levels of triglyceride and total cholesterol as well as the hepatic triglyceride and free fatty acid levels, and effectively alleviated fatty degeneration in the liver. A list of OMT-related DEPs have been screened and evaluated by bioinformatics analysis. OMT significantly decreased the expressions of L-FABP, Plin2, FASN and SCD1 and increased Sirt1 expression and AMPKα phosphorylation in the liver of rats with steatosis. CONCLUSION: The present study has confirmed the significant efficacy of OMT for improving steatosis and revealed hepatic proteomic changes and Sirt1/AMPK signaling activation by OMT treatment in rats with steatosis.

14.
Anal Bioanal Chem ; 412(11): 2579-2587, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32076790

RESUMO

A series of Ru(II)-containing metallopolymers with different polypyridyl complexes, namely [Ru(N^N)2(L)](PF6)2 (L = bipyridine-branched polymer; N^N = bpy: 2,2'-bipyridine (Ru 1); phen: 1,10-phenanthroline (Ru 2); dpp: 4,7-diphenyl-1,10-phenanthroline (Ru 3)), were synthesized with the motive that adjusting π-conjugation length of ligands might produce competent luminescent oxygen probes. The three hydrophobic metallopolymers were studied with 1H NMR, UV-Vis absorption, and emission spectroscopy, and then were utilized to prepare biocompatible nanoparticles (NPs) via a nanoprecipitation method. Luminescent properties of the NPs were investigated against dissolved oxygen by steady-state and time-resolved spectroscopy respectively. Luminescence quenching of the three NPs all followed a linear behavior in the range of 0-43 ppm (oxygen concentration), but Ru 3-NPs exhibited the highest oxygen sensitivity (82%) and longest emission wavelength (λex = 460 nm; λem = 617 nm). In addition, external interferons from cellular environments (e.g., pH, temperature, and proteins) had been studied on Ru 3-NPs. Finally, dissolved oxygen in monolayer cells under normoxic/hypoxic conditions was clearly differentiated by using Ru 3-NPs as the luminescent sensor, and, more importantly, hypoxia within multicellular tumor spheroids was vividly imaged. These results suggest that such Ru(II)-containing metallopolymers are strong candidates for luminescent nanosensors towards hypoxia. Graphical abstract.


Assuntos
Substâncias Luminescentes/química , Oxigênio/análise , Rutênio/química , Hipóxia Tumoral , 2,2'-Dipiridil/química , Células HeLa , Humanos , Ligantes , Luminescência , Medições Luminescentes/métodos , Fenantrolinas/química
15.
RSC Adv ; 10(8): 4211-4217, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35495235

RESUMO

Lead halide perovskites have emerged as promising optoelectronic materials due to their excellent efficiencies in photovoltaic and light-emitting applications. CsPbBr3 is a kind of all-inorganic perovskite that exhibits higher stability. Here, we report the synthesis of hexagonal and circular all-inorganic CsPbBr3 perovskite nanoplates by changing the reaction temperature. As time goes on, the different reaction temperatures play an important role in determining the shape and size. We use first-principles to explicate the formation of hexagonal nanoplates. Meanwhile, a model is built and the calculation of the properties is conducted. In brief, a method to directly and conveniently synthesize all-inorganic CsPbBr3 is proposed.

17.
Nanotechnology ; 30(34): 345207, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31035278

RESUMO

Tumor hypoxia severely reduces the efficiency of photodynamic therapy (PDT) through the insufficient supply of oxygen. In this work, we reported on a design of fluorinated nanophotosensitizers (NPSs) prepared by a facile reprecipitation-encapsulation method, with the aim of addressing the issue of hypoxia. The fluorinated NPSs consisted of a hybrid particle core of perfluorosiloxane-polystyrene, doped with a fluorinated photosensitizer, and a biocompatible poly-l-lysine shell. Compared with non-fluorinated counterpart NPSs that are similarly prepared except for the replacement of perfluorosiloxane with alkoxysilane, the fluorinated NPSs saturated with O2 exhibit approximately 3.5 fold higher singlet oxygen production yield and higher in vitro PDT efficiency due to the O2-carrying capability of intra-particle 'F-C' bonds.


Assuntos
Nanopartículas/química , Fármacos Fotossensibilizantes/química , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Fluoretação , Células HeLa , Humanos , Lasers , Neoplasias/tratamento farmacológico , Oxigênio/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Polilisina/química , Poliestirenos/química , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo
18.
Front Pharmacol ; 10: 322, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031620

RESUMO

Various isoforms of myocyte enhancer factor 2 (MEF2) have been shown to play a role in the activation of rat hepatic stellate cells (HSCs) in culture. The signals that regulate MEF2 in HSCs are unknown. In addition, whether MEF2s regulate the activation of human HSCs (H-HSCs) is unclear. Here, we studied the expression and function of MEF2s in H-HSCs. Our data showed that the levels of MEF2A, C, and D proteins were high in liver tissues from patients with cirrhosis and increased during culture-induced activation of primary H-HSCs. Exposure of H-HSCs to transforming growth factor beta 1 (TGF-ß1) led to a significant increase in MEF2A and C protein levels and enhanced MEF2 activity. Interestingly, TGF-ß1 did not further enhance MEF2D levels. Furthermore, TGF-ß1 activated p38 mitogen-activated protein kinase (MAPK) and led to increased phosphorylation of MEF2C at its p38 recognition site. Inhibition of p38 MAPK inhibited both TGF-ß1- and culture-induced activation of MEF2. The activity of collagen I reporter in H-HSCs was significantly reduced when MEF2A and MEF2C were blocked with overexpression of dominant negative MEF2 mutants. Salvianolic-acid B (SA-B), a water-soluble element of Salvia miltiorrhiza known to have anti-fibrosis effects, attenuated both basal and TGF-ß1-induced increased levels of MEF2A and C mRNA and protein. In addition, SA-B inhibited MEF2 activity, which correlated with reduced expression of the HSC activation markers, α-smooth muscle actin (α-SMA), and collagen I. Administration of SA-B reduced MEF2A in vivo, which was accompanied by reduced levels of α-SMA in a model of dimethylnitrosamine-induced rat liver fibrosis. We concluded that the MEF2 transcription factor was stimulated by TGF-ß1 in H-HSCs. Antagonizing TGF-ß1-induced activation of the MEF2 signaling pathway may account in part for the anti-fibrosis effects of SA-B.

19.
J Cell Physiol ; 234(9): 16215-16225, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30779348

RESUMO

This study aimed to validate the methylation of key genes in hepatocellular carcinoma (HCC) screened by bioinformatics analysis and explore whether they affected HCC cell proliferation, migration, and invasion. Using The Cancer Genome Atlas (TCGA) database, HCC-related differentially methylated positions (DMPs) were screened, genes corresponding to DMPs were selected, and prognosis-related genes were identified. A representative DMP was used to divide the DMPs into hyper- and hypomethylated groups. Expression of key genes in cell lines was detected using quantitative real-time polymerase chain reaction and western blot analysis. After treatment of HepG2 cells with 5-Aza-2'-deoxycytidine (5-Aza-DC), gene expression was observed. Bisulfite sequencing PCR assay was used to detect methylation frequency. Overexpressed GRASP lentiviral vectors were constructed to analyze their influence on cell proliferation, migration, and invasion using cell counting kit-8 and transwell assays. Forty-three HCC prognosis-related genes were screened using the TCGA database. cg00249511 (SCT) was used to divide the DMPs into hyper- and hypomethylated groups, distinguishing between high- and low-risk samples. The prognosis survival model constructed using 12 genes revealed the prognosis type. GRASP messenger RNA was downregulated in HepG2 and upregulated after 5-Aza-DC treatment. In HCC tissues, methylation frequency of GRASP was upregulated. GRASP overexpression inhibited HepG2 cell proliferation, invasion, and G-CSFR expression. Thus, GRASP might be a prognosis-related gene controlled by methylation.

20.
J Cell Mol Med ; 23(2): 1427-1438, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30499204

RESUMO

MiRNAs are a class of small non-coding RNAs that are involved in the development and progression of various complex diseases. Great efforts have been made to discover potential associations between miRNAs and diseases recently. As experimental methods are in general expensive and time-consuming, a large number of computational models have been developed to effectively predict reliable disease-related miRNAs. However, the inherent noise and incompleteness in the existing biological datasets have inevitably limited the prediction accuracy of current computational models. To solve this issue, in this paper, we propose a novel method for miRNA-disease association prediction based on matrix completion and label propagation. Specifically, our method first reconstructs a new miRNA/disease similarity matrix by matrix completion algorithm based on known experimentally verified miRNA-disease associations and then utilizes the label propagation algorithm to reliably predict disease-related miRNAs. As a result, MCLPMDA achieved comparable performance under different evaluation metrics and was capable of discovering greater number of true miRNA-disease associations. Moreover, case study conducted on Breast Neoplasms further confirmed the prediction reliability of the proposed method. Taken together, the experimental results clearly demonstrated that MCLPMDA can serve as an effective and reliable tool for miRNA-disease association prediction.


Assuntos
Neoplasias da Mama/genética , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , MicroRNAs/genética , Algoritmos , Biologia Computacional , Simulação por Computador , Feminino , Estudos de Associação Genética , Doenças Genéticas Inatas/epidemiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...