Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(37): 15837-15843, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34518851

RESUMO

This report presents new findings of exchange bias and related structural and magnetic properties in iron carbide/magnetite (Fe5C2/Fe3O4) core/shell nanoparticles. The exchange bias emerges from an energetic landscape, namely a first-order phase transition-the Verwey transition at 125 K, during which the Fe3O4 shell changes from the cubic to monoclinic structure. The phase transition leads to the exchange bias because it results in abrupt changes in magnetocrystalline anisotropy and exchange coupling. Another unique phenomenon identified in this composite system is enhanced magnetic coercivity due to the uniaxial anisotropy of the monoclinic phase. An analysis of the correlations between the observed phenomena is given based on the temperature dependence of the coercivity, the exchange bias field values, and the Verwey transition temperature.

2.
Nat Commun ; 10(1): 3587, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399566

RESUMO

Dislocation activity is critical to ductility and the mechanical strength of metals. Dislocations are the primary drivers of plastic deformation, and their interactions with each other and with other microstructural features such as grain boundaries (GBs) lead to strengthening of metals. In general, suppressing dislocation activity leads to brittleness of polycrystalline materials. Here, we find an intermetallic that can accommodate large plastic strain without the help of dislocations. For small grain sizes, the primary deformation mechanism is GB sliding, whereas for larger grain sizes the material deforms by direct amorphization along shear planes. The unusual deformation mechanisms lead to the absence of traditional Hall-Petch (HP) relation commonly observed in metals and to an extended regime of strength weakening with grain refinement, referred to as the inverse HP relation. The results are first predicted in simulations and then confirmed experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...