Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 193: 106769, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955237

RESUMO

The bacterium Escherichia coli is one of the main causes of urinary tract infections. The formation of bacterial biofilms, especially associated with the use of urinary catheters, contributes to the establishment of recurrent infections and the development of resistance to treatment. Strains of E. coli that produce extended-spectrum beta-lactamases (ESBL) have a greater ability to form biofilms. In addition, there is a lack of drugs available in the market with antibiofilm activity. Promethazine (PMZ) is an antihistamine known to have antimicrobial activity against different pathogens, including in the form of biofilms, but there are still few studies of its activity against ESBL E. coli biofilms. The aim of this study was to evaluate the antimicrobial activity of PMZ against ESBL E. coli biofilms, as well as to assess the application of this drug as a biofilm prevention agent in urinary catheters. To this end, the minimum inhibitory concentration and minimum bactericidal concentration of PMZ in ESBL E. coli strains were determined using the broth microdilution assay and tolerance level measurement. The activity of PMZ against the cell viability of the in vitro biofilm formation of ESBL E. coli was analyzed by the MTT colorimetric assay and its ability to prevent biofilm formation when impregnated in a urinary catheter was investigated by counting colony-forming units (CFU) and confirmed by scanning electron microscopy (SEM). PMZ showed bactericidal activity and significantly reduced (p < 0.05) the viability of the biofilm being formed by ESBL E. coli at concentrations of 256 and 512 µg/ml, as well as preventing the formation of biofilm on urinary catheters at concentrations starting at 512 µg/ml by reducing the number of CFUs, as also observed by SEM. Thus, PMZ is a promising candidate to prevent the formation of ESBL E. coli biofilms on abiotic surfaces.


Assuntos
Antibacterianos , Biofilmes , Escherichia coli , Testes de Sensibilidade Microbiana , Prometazina , Cateteres Urinários , beta-Lactamases , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Prometazina/farmacologia , Escherichia coli/efeitos dos fármacos , beta-Lactamases/metabolismo , Cateteres Urinários/microbiologia , Antibacterianos/farmacologia , Humanos , Infecções Urinárias/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...