Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 307(Pt 3): 135763, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35952792

RESUMO

In recent years, there has been an increasingly growing interest regarding the use of electrochemical advanced oxidation processes (EAOPs) which are considered highly promising alternative treatment techniques for addressing environmental issues related to pollutants of emerging concern. In EAOPs, electrogenerated oxidizing agents, such as hydroxyl radical (HO•), can react non-selectively with a wide range of organic compounds, degrading and mineralizing their structures to unharmful molecules like CO2, H2O, and inorganic ions. To this date, a broad spectrum of advanced electrocatalysts have been developed and applied for the treatment of compounds of interest in different matrices, specifically aiming at enhancing the degradation performance. New combined methods have also been employed as alternative treatment techniques targeted at circumventing the major obstacles encountered in Fenton-based processes, such as high costs and energy consumption, which still contribute significantly toward inhibiting the large-scale application of these processes. First, some fundamental aspects of EAOPs will be presented. Further, we will provide an overview of electrode materials which have been recently developed and reported in the literature, highlighting different anode and cathode structures employed in EAOPs, their main advantages and disadvantages, as well as their contribution to the performance of the treatment processes. The influence of operating parameters, such as initial concentrations, pH effect, temperature, supporting electrolyte, and radiation source, on the treatment processes were also studied. Finally, hybrid techniques which have been reported in the literature and critically assess the most recent techniques used for evaluating the degradation efficiency of the treatment processes.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Dióxido de Carbono , Descontaminação , Técnicas Eletroquímicas/métodos , Eletrodos , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Oxidantes , Oxirredução , Águas Residuárias/química , Poluentes Químicos da Água/química
2.
Chemosphere ; 239: 124670, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31505441

RESUMO

The objectives of this study were to determine the viability of removing Orange II (OII) dye by simulated solar photoelectro-Fenton (SSPEF) and to evaluate the stability of a WO2.72/Vulcan XC72 gas diffusion electrode (GDE) and thus determine its best operating parameters. The GDE cathode was combined with a BDD anode for decolorization and mineralization of 350 mL of 0.26 mM OII by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF) at 100, 150 and 200 mA cm-2 and SSPEF at 150 mA cm-2. The GDE showed successful operation for electrogeneration, good reproducibility and low leaching of W. Decolorization and OII decay were directly proportional to the current density (j). AO-H2O2 had a reduced performance that was only half of the SSPEF, PEF and EF treatments. The mineralization efficiency was in the following order: AO-H2O2 < EF < PEF ≈ SSPEF. This showed that the GDE, BDD anode and light radiation combination was advantageous and indicated that the SSPEF process is promising with both a lower cost than using UV lamps and simulating solar photoelectro-Fenton process. The PEF process with the lowest j (100 mA cm-2) showed the best performance-mineralization current efficiency.


Assuntos
Compostos Azo/análise , Benzenossulfonatos/análise , Técnicas Eletroquímicas , Peróxido de Hidrogênio/química , Ferro/química , Poluentes Químicos da Água/análise , Eletrodos , Oxirredução , Reprodutibilidade dos Testes , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...