Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(4): 2174-2184, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38235735

RESUMO

Recently, all-inorganic copper(I) metal halides have emerged as promising optical materials due to their high light emission efficiencies. This work details the crystal structure of the two hybrid organic-inorganic metal halides [(CH3)3SO]M2I3 (M = Cu and Ag) and their alloyed derivatives [(CH3)3SO]Cu2-xAgxI3 (x = 0.2; 1.25), which were obtained by incorporating trimethylsulfoxonium organic cation (CH3)3SO+ in place of Cs+ in the yellow-emitting all-inorganic CsCu2I3. These compounds are isostructural and centrosymmetric with the space group Pnma, featuring one-dimensional edge-sharing [M2I3]- anionic double chains separated by rows of (CH3)3SO+ cations. Based on density functional theory calculations, the highest occupied molecular orbitals (HOMOs) of [(CH3)3SO]M2I3 (M = Cu and Ag) are dominated by the Cu or Ag d and I p orbitals, while the lowest unoccupied molecular orbitals (LUMOs) are Cu or Ag s and I p orbitals. [(CH3)3SO]Cu2I3 single crystals exhibit a semiconductor resistivity of 9.94 × 109 Ω·cm. Furthermore, a prototype [(CH3)3SO]Cu2I3 single-crystal-based X-ray detector with a detection sensitivity of 200.54 uCGy-1 cm-2 (at electrical field E = 41.67 V/mm) was fabricated, indicating the potential use of [(CH3)3SO]Cu2I3 for radiation detection applications.

2.
J Mater Chem C Mater ; 11(43): 15357-15365, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38304018

RESUMO

Recently, metal halides have shown great potential for applications such as solar energy harvesting, light emission, and ionizing radiation detection. In this work, we report the preparation, structural, thermal, and electronic properties of a new zero-dimensional (0D) halide (TEP)InBr4 (where TEP is tetraethylphosphonium organic cation, C8H20P+). (TEP)InBr4 single crystals are obtained within a few days of continuous crystal growth time via a solution growth methodology. (TEP)InBr4 shows a relatively large optical bandgap energy of 4.32 eV and a low thermal conductivity between 0.33±0.05 and 0.45±0.07 W/m-K. Based on the density functional theory (DFT) calculations, the highest occupied molecular orbitals (HOMOs) of (TEP)InBr4 are dominated by the Br states, while the lowest unoccupied molecular orbitals (LUMOs) are constituted by both In and Br states. (TEP)InBr4 single crystals exhibit a semiconductor resistivity of 1.73×1013 Ω·cm and a mobility-lifetime (mu-tau) product of 2.07×10-5 cm2/V. Finally, a prototype (TEP)InBr4 single crystal-based X-ray detector with a detection sensitivity of 569.85 uCGy-1cm-2 (at electrical field E=100 V/mm) was fabricated, indicating the potential use of (TEP)InBr4 for radiation detection applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA