Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 303: 122394, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38007919

RESUMO

Nanodecoy systems based on analogues of viral cellular receptors assembled onto fluid lipid-based membranes of nano/extravescicles are potential new tools to complement classic therapeutic or preventive antiviral approaches. The need for lipid-based membranes for transmembrane receptor anchorage may pose technical challenges along industrial translation, calling for alternative geometries for receptor multimerization. Here we developed a semisynthetic self-assembling SARS-CoV-2 nanodecoy by multimerizing the biotin labelled virus cell receptor -ACE2- ectodomain onto a poly-avidin nanoparticle (NP) based on the Avidin-Nucleic-Acid-NanoASsembly-ANANAS. The ability of the assembly to prevent SARS-CoV-2 infection in human lung cells and the affinity of the ACE2:viral receptor-binding domain (RBD) interaction were measured at different ACE2:NP ratios. At ACE2:NP = 30, 90 % SARS-CoV-2 infection inhibition at ACE2 nanomolar concentration was registered on both Wuhan and Omicron variants, with ten-fold higher potency than the monomeric protein. Lower and higher ACE2 densities were less efficient suggesting that functional recognition between multi-ligand NPs and multi-receptor virus surfaces requires optimal geometrical relationships. In vivo studies in mice showed that the biodistribution and safety profiles of the nanodecoy are potentially suitable for preventing viral infection upon nasal instillation. Viral receptor multimerization using ANANAS is a convenient process which, in principle, could be rapidly adapted to counteract also other viral infections.


Assuntos
COVID-19 , Ácidos Nucleicos , Animais , Humanos , Camundongos , SARS-CoV-2/metabolismo , Avidina/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Ácidos Nucleicos/metabolismo , Distribuição Tecidual , Ligação Proteica , Receptores Virais , Lipídeos
2.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446392

RESUMO

Hydroxylysine glycosylations are post-translational modifications (PTMs) essential for the maturation and homeostasis of fibrillar and non-fibrillar collagen molecules. The multifunctional collagen lysyl hydroxylase 3 (LH3/PLOD3) and the collagen galactosyltransferase GLT25D1 are the human enzymes that have been identified as being responsible for the glycosylation of collagen lysines, although a precise description of the contribution of each enzyme to these essential PTMs has not yet been provided in the literature. LH3/PLOD3 is thought to be capable of performing two chemically distinct collagen glycosyltransferase reactions using the same catalytic site: an inverting beta-1,O-galactosylation of hydroxylysines (Gal-T) and a retaining alpha-1,2-glucosylation of galactosyl hydroxylysines (Glc-T). In this work, we have combined indirect luminescence-based assays with direct mass spectrometry-based assays and molecular structure studies to demonstrate that LH3/PLOD3 only has Glc-T activity and that GLT25D1 only has Gal-T activity. Structure-guided mutagenesis confirmed that the Glc-T activity is defined by key residues in the first-shell environment of the glycosyltransferase catalytic site as well as by long-range contributions from residues within the same glycosyltransferase (GT) domain. By solving the molecular structures and characterizing the interactions and solving the molecular structures of human LH3/PLOD3 in complex with different UDP-sugar analogs, we show how these studies could provide insights for LH3/PLOD3 glycosyltransferase inhibitor development. Collectively, our data provide new tools for the direct investigation of collagen hydroxylysine PTMs and a comprehensive overview of the complex network of shapes, charges, and interactions that enable LH3/PLOD3 glycosyltransferase activities, expanding the molecular framework and facilitating an improved understanding and manipulation of glycosyltransferase functions in biomedical applications.


Assuntos
Glicosiltransferases , Hidroxilisina , Humanos , Glicosiltransferases/genética , Hidroxilisina/metabolismo , Glicosilação , Colágeno/metabolismo , Lisina/metabolismo
3.
Photosynth Res ; 151(1): 1-10, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34468919

RESUMO

Photosynthetic organisms have evolved photoprotective mechanisms to acclimate to light intensity fluctuations in their natural growth environments. Photosystem (PS) II subunit S (PsbS) and light-harvesting complex (LHC) stress-related proteins (LhcSR) are essential for triggering photoprotection in vascular plants and green algae, respectively. The activity of both proteins is strongly enhanced in the moss Physcomitrella patens under high-light conditions. However, their role in regulating photosynthesis acclimation in P. patens under fluctuating light (FL) conditions is still unknown. Here, we compare the responses of wild-type (WT) P. patens and mutants lacking PsbS (psbs KO) or LhcSR1 and 2 (lhcsr KO) to FL conditions in which the low-light phases were periodically interrupted with high-light pulses. lhcsr KO mutant showed a strong reduction in growth with respect to WT and psbs KO under FL conditions. The lack of LhcSR not only decreased the level of non-photochemical quenching, resulting in an over-reduced plastoquinone pool, but also significantly increased the PSI acceptor limitation values with respect to WT and psbs KO under FL conditions. Moreover, in lhcsr KO mutant, the abundance of PSI core and PSI-LHCI complex decreased greatly under FL conditions compared with the WT and psbs KO. We proposed that LhcSR in P. patens play a crucial role in moss acclimation to dynamic light changes.


Assuntos
Bryopsida , Aclimatação , Bryopsida/genética , Proteínas de Choque Térmico , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo
4.
J Am Chem Soc ; 143(42): 17577-17586, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34648708

RESUMO

Plants use energy from the sun yet also require protection against the generation of deleterious photoproducts from excess energy. Photoprotection in green plants, known as nonphotochemical quenching (NPQ), involves thermal dissipation of energy and is activated by a series of interrelated factors: a pH drop in the lumen, accumulation of the carotenoid zeaxanthin (Zea), and formation of arrays of pigment-containing antenna complexes. However, understanding their individual contributions and their interactions has been challenging, particularly for the antenna arrays, which are difficult to manipulate in vitro. Here, we achieved systematic and discrete control over the array size for the principal antenna complex, light-harvesting complex II, using near-native in vitro membranes called nanodiscs. Each of the factors had a distinct influence on the level of dissipation, which was characterized by measurements of fluorescence quenching and ultrafast chlorophyll-to-carotenoid energy transfer. First, an increase in array size led to a corresponding increase in dissipation; the dramatic changes in the chlorophyll dynamics suggested that this is due to an allosteric conformational change of the protein. Second, a pH drop increased dissipation but exclusively in the presence of protein-protein interactions. Third, no Zea dependence was identified which suggested that Zea regulates a distinct aspect of NPQ. Collectively, these results indicate that each factor provides a separate type of control knob for photoprotection, which likely enables a flexible and tunable response to solar fluctuations.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Zeaxantinas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Transferência de Energia , Concentração de Íons de Hidrogênio , Luz , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Nanoestruturas/química , Ligação Proteica , Multimerização Proteica , Spinacia oleracea/química , Tilacoides/química , Tilacoides/metabolismo , Xantofilas/metabolismo
5.
Biochim Biophys Acta Bioenerg ; 1861(5-6): 148115, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32204904

RESUMO

Green plants protect against photodamage by dissipating excess energy in a process called non-photochemical quenching (NPQ). In vivo, NPQ is activated by a drop in the luminal pH of the thylakoid membrane that triggers conformational changes of the antenna complexes, which activate quenching channels. The drop in pH also triggers de-epoxidation of violaxanthin, one of the carotenoids bound within the antenna complexes, into zeaxanthin, and so the amplitude of NPQ in vivo has been shown to increase in the presence of zeaxanthin. In vitro studies on light-harvesting complex II (LHCII), the major antenna complex in plants, compared different solubilization environments, which give rise to different levels of quenching and so partially mimic NPQ in vivo. However, in these studies both completely zeaxanthin-independent and zeaxanthin-dependent quenching have been reported, potentially due to the multiplicity of solubilization environments. Here, we characterize the zeaxanthin dependence of the photophysics in LHCII in a near-physiological membrane environment, which produces slightly enhanced quenching relative to detergent solubilization, the typical in vitro environment. The photophysical pathways of dark-adapted and in vitro de-epoxidized LHCIIs are compared, representative of the low-light and high-light conditions in vivo, respectively. The amplitude of quenching as well as the dissipative photophysics are unaffected by zeaxanthin at the level of individual LHCIIs, suggesting that zeaxanthin-dependent quenching is independent of the channels induced by the membrane. Furthermore, our results demonstrate that additional factors beyond zeaxanthin incorporation in LHCII are required for full development of NPQ.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Zeaxantinas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Transferência de Energia , Fluorescência , Concentração de Íons de Hidrogênio , Modelos Moleculares , Spinacia oleracea/metabolismo , Zeaxantinas/química
6.
Nat Commun ; 11(1): 1295, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157079

RESUMO

Plants prevent photodamage under high light by dissipating excess energy as heat. Conformational changes of the photosynthetic antenna complexes activate dissipation by leveraging the sensitivity of the photophysics to the protein structure. The mechanisms of dissipation remain debated, largely due to two challenges. First, because of the ultrafast timescales and large energy gaps involved, measurements lacked the temporal or spectral requirements. Second, experiments have been performed in detergent, which can induce non-native conformations, or in vivo, where contributions from homologous antenna complexes cannot be disentangled. Here, we overcome both challenges by applying ultrabroadband two-dimensional electronic spectroscopy to the principal antenna complex, LHCII, in a near-native membrane. Our data provide evidence that the membrane enhances two dissipative pathways, one of which is a previously uncharacterized chlorophyll-to-carotenoid energy transfer. Our results highlight the sensitivity of the photophysics to local environment, which may control the balance between light harvesting and dissipation in vivo.


Assuntos
Carotenoides/metabolismo , Membrana Celular/metabolismo , Clorofila/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Nanoestruturas/química , Complexos de Proteínas Captadores de Luz/química , Conformação Proteica
7.
J Exp Bot ; 70(20): 5527-5535, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31424076

RESUMO

Photosynthesis depends on light. However, excess light can be harmful for the photosynthetic apparatus because it produces reactive oxygen species (ROS) that cause photoinhibition. Oxygenic organisms evolved photoprotection mechanisms to counteract light-dependent ROS production, including preventive dissipation of excited states of chlorophyll (1Chl*) into heat in the process termed non-photochemical quenching (NPQ). This consists in the activation of 1Chl* quenching reactions when the thylakoid luminal pH drops below 5.2. In turn, acidification occurs when the rate of the CO2 reducing cycle is saturated and cannot regenerate ADP+Pi, thus inhibiting ATPase activity and the return of protons (H+) to the stromal compartment. The major and fastest component of NPQ is energy quenching, qE, which in algae depends on the Light-Harvesting Complex Stress-Related (LHCSR) proteins. In mosses, LHCSR proteins have remained the major catalysts of energy dissipation, but a minor contribution also occurs via a homologous protein, Photosystem II Subunit S (PSBS). In vascular plants, however, LHCSR has disappeared and PSBS is the only pH-sensitive trigger of qE. Why did PSBS replace LHCSR in the later stages of land colonization? Both PSBS and LHCSR belong to the Light Harvesting Complex superfamily (LHC) and share properties such as harboring protonatable residues that are exposed to the chloroplast lumen, which is essential for pH sensing. However, there are also conspicuous differences: LHCSR binds chlorophylls and xanthophylls while PSBS does not, implying that the former may well catalyse quenching reactions while the latter needs pigment-binding partners for its quenching function. Here, the evolution of quenching mechanisms for excess light is reviewed with a focus on the role of LHCSR versus PSBS, and the reasons for the redundancy of LHCSR in vascular plants as PSBS became established.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Evolução Biológica , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo
8.
Photosynth Res ; 142(3): 249-264, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31270669

RESUMO

Non-photochemical quenching, NPQ, of chlorophyll fluorescence regulates the heat dissipation of chlorophyll excited states and determines the efficiency of the oxygenic photosynthetic systems. NPQ is regulated by a pH-sensing protein, responding to the chloroplast lumen acidification induced by excess light, coupled to an actuator, a chlorophyll/xanthophyll subunit where quenching reactions are catalyzed. In plants, the sensor is PSBS, while the two pigment-binding proteins Lhcb4 (also known as CP29) and LHCII are the actuators. In algae and mosses, stress-related light-harvesting proteins (LHCSR) comprise both functions of sensor and actuator within a single subunit. Here, we report on expressing the lhcsr1 gene from the moss Physcomitrella patens into several Arabidopsis thaliana npq4 mutants lacking the pH sensing PSBS protein essential for NPQ activity. The heterologous protein LHCSR1 accumulates in thylakoids of A. thaliana and NPQ activity can be partially restored. Complementation of double mutants lacking, besides PSBS, specific xanthophylls, allowed analyzing chromophore requirement for LHCSR-dependent quenching activity. We show that the partial recovery of NPQ is mostly due to the lower levels of Zeaxanthin in A. thaliana in comparison to P. patens. Complemented npq2npq4 mutants, lacking besides PSBS, Zeaxanthin Epoxidase, showed an NPQ recovery of up to 70% in comparison to A. thaliana wild type. Furthermore, we show that Lutein is not essential for the folding nor for the quenching activity of LHCSR1. In short, we have developed a system to study the function of LHCSR proteins using heterologous expression in a variety of A. thaliana mutants.


Assuntos
Arabidopsis/metabolismo , Bryopsida/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Luz , Complexos de Proteínas Captadores de Luz/genética , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Processos Fotoquímicos , Fotossíntese , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tilacoides/genética , Tilacoides/metabolismo , Xantofilas/metabolismo , Zeaxantinas/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(23): 11247-11252, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31101718

RESUMO

Biological systems are subjected to continuous environmental fluctuations, and therefore, flexibility in the structure and function of their protein building blocks is essential for survival. Protein dynamics are often local conformational changes, which allows multiple dynamical processes to occur simultaneously and rapidly in individual proteins. Experiments often average over these dynamics and their multiplicity, preventing identification of the molecular origin and impact on biological function. Green plants survive under high light by quenching excess energy, and Light-Harvesting Complex Stress Related 1 (LHCSR1) is the protein responsible for quenching in moss. Here, we expand an analysis of the correlation function of the fluorescence lifetime by improving the estimation of the lifetime states and by developing a multicomponent model correlation function, and we apply this analysis at the single-molecule level. Through these advances, we resolve previously hidden rapid dynamics, including multiple parallel processes. By applying this technique to LHCSR1, we identify and quantitate parallel dynamics on hundreds of microseconds and tens of milliseconds timescales, likely at two quenching sites within the protein. These sites are individually controlled in response to fluctuations in sunlight, which provides robust regulation of the light-harvesting machinery. Considering our results in combination with previous structural, spectroscopic, and computational data, we propose specific pigments that serve as the quenching sites. These findings, therefore, provide a mechanistic basis for quenching, illustrating the ability of this method to uncover protein function.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Fluorescência , Luz , Imagem Individual de Molécula/métodos
10.
Proc Natl Acad Sci U S A ; 116(10): 4212-4217, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782831

RESUMO

Photosynthetic organisms prevent oxidative stress from light energy absorbed in excess through several photoprotective mechanisms. A major component is thermal dissipation of chlorophyll singlet excited states and is called nonphotochemical quenching (NPQ). NPQ is catalyzed in green algae by protein subunits called LHCSRs (Light Harvesting Complex Stress Related), homologous to the Light Harvesting Complexes (LHC), constituting the antenna system of both photosystem I (PSI) and PSII. We investigated the role of LHCSR1 and LHCSR3 in NPQ activation to verify whether these proteins are involved in thermal dissipation of PSI excitation energy, in addition to their well-known effect on PSII. To this aim, we measured the fluorescence emitted at 77 K by whole cells in a quenched or unquenched state, using green fluorescence protein as the internal standard. We show that NPQ activation by high light treatment in Chlamydomonas reinhardtii leads to energy quenching in both PSI and PSII antenna systems. By analyzing quenching properties of mutants affected on the expression of LHCSR1 or LHCSR3 gene products and/or state 1-state 2 transitions or zeaxanthin accumulation, namely, npq4, stt7, stt7 npq4, npq4 lhcsr1, lhcsr3-complemented npq4 lhcsr1 and npq1, we showed that PSI undergoes NPQ through quenching of the associated LHCII antenna. This quenching event is fast-reversible on switching the light off, is mainly related to LHCSR3 activity, and is dependent on thylakoid luminal pH. Moreover, PSI quenching could also be observed in the absence of zeaxanthin or STT7 kinase activity.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/genética , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/genética , Proteínas Quinases/metabolismo , Temperatura , Zeaxantinas/metabolismo
11.
Nat Plants ; 4(11): 910-919, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30374091

RESUMO

Photosystem I of the moss Physcomitrella patens has special properties, including the capacity to undergo non-photochemical fluorescence quenching. We studied the organization of photosystem I under different light and carbon supply conditions in wild-type moss and in moss with the lhcb9 (light-harvesting complex) knockout genotype, which lacks an antenna protein endowed with red-shifted absorption forms. Wild-type moss, when grown on sugars and in low light, accumulated LHCB9 proteins and a large form of the photosystem I supercomplex, which, besides the canonical four LHCI subunits, included a LHCII trimer and four additional LHC monomers. The lhcb9 knockout produced an angiosperm-like photosystem I supercomplex with four LHCI subunits irrespective of the growth conditions. Growth in the presence of sublethal concentrations of electron transport inhibitors that caused oxidation or reduction of the plastoquinone pool prevented or promoted, respectively, the accumulation of LHCB9 and the formation of the photosystem I megacomplex. We suggest that LHCB9 is a key subunit regulating the antenna size of photosystem I and the ability to avoid the over-reduction of plastoquinone: this condition is potentially dangerous in the shaded and sunfleck-rich environment typical of mosses, whose plastoquinone pool is reduced by both photosystem II and the oxidation of sugar substrates.


Assuntos
Bryopsida/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Bryopsida/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Complexos de Proteínas Captadores de Luz/ultraestrutura , Microscopia Eletrônica , Complexo de Proteína do Fotossistema I/efeitos da radiação , Complexo de Proteína do Fotossistema I/ultraestrutura , Complexo de Proteína do Fotossistema II/metabolismo , Proteômica , Tilacoides/metabolismo
12.
Biochem Soc Trans ; 46(2): 467-482, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666217

RESUMO

Photosynthesis uses sunlight to convert water and carbon dioxide into biomass and oxygen. When in excess, light can be dangerous for the photosynthetic apparatus because it can cause photo-oxidative damage and decreases the efficiency of photosynthesis because of photoinhibition. Plants have evolved many photoprotective mechanisms in order to face reactive oxygen species production and thus avoid photoinhibition. These mechanisms include quenching of singlet and triplet excited states of chlorophyll, synthesis of antioxidant molecules and enzymes and repair processes for damaged photosystem II and photosystem I reaction centers. This review focuses on the mechanisms involved in photoprotection of chloroplasts through dissipation of energy absorbed in excess.


Assuntos
Luz , Plantas/efeitos da radiação , Antioxidantes/metabolismo , Clorofila/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Protetores contra Radiação/metabolismo
13.
Sci Rep ; 7(1): 11158, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894198

RESUMO

Light harvesting for oxygenic photosynthesis is regulated to prevent the formation of harmful photoproducts by activation of photoprotective mechanisms safely dissipating the energy absorbed in excess. Lumen acidification is the trigger for the formation of quenching states in pigment binding complexes. With the aim to uncover the photoprotective functional states responsible for excess energy dissipation in green algae and mosses, we compared the fluorescence dynamic properties of the light-harvesting complex stress-related (LHCSR1) protein, which is essential for fast and reversible regulation of light use efficiency in lower plants, as compared to the major LHCII antenna protein, which mainly fulfills light harvesting function. Both LHCII and LHCSR1 had a chlorophyll fluorescence yield and lifetime strongly dependent on detergent concentration but the transition from long- to short-living states was far more complete and fast in the latter. Low pH and zeaxanthin binding enhanced the relative amplitude of quenched states in LHCSR1, which were characterized by the presence of 80 ps fluorescence decay components with a red-shifted emission spectrum. We suggest that energy dissipation occurs in the chloroplast by the activation of 80 ps quenching sites in LHCSR1 which spill over excitons from the photosystem II antenna system.


Assuntos
Bryopsida/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Plantas/metabolismo , Zeaxantinas/metabolismo , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/química , Ligação Proteica , Proteínas Recombinantes , Análise Espectral
14.
Nat Chem ; 9(8): 772-778, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28754946

RESUMO

In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity-step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Sítios de Ligação , Carotenoides/química , Concentração de Íons de Hidrogênio , Luz , Fotossíntese/fisiologia , Conformação Proteica , Imagem Individual de Molécula , Nicotiana/química
15.
Biochim Biophys Acta ; 1857(12): 1870-1878, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27614061

RESUMO

Plants harvest photons for photosynthesis using light-harvesting complexes (LHCs)-an array of chlorophyll proteins that can reversibly switch from harvesting to energy-dissipation mode to prevent over-excitation and damage of the photosynthetic apparatus. In unicellular algae and lower plants this process requires the LHCSR proteins which senses over-acidification of the lumen trough protonatable residues exposed to the thylakoid lumen to activate quenching reactions. Further activation is provided by replacement of the violaxanthin ligand with its de-epoxidized product, zeaxanthin, also induced by excess light. We have produced the ppLHCSR1 protein from Physcomitrella patens by over-expression in tobacco and purified it in either its violaxanthin- or the zeaxanthin-binding form with the aim of analyzing their spectroscopic properties at either neutral or acidic pH. Using femtosecond spectroscopy, we demonstrated that the energy dissipation is achieved by two distinct quenching mechanism which are both activated by low pH. The first is present in both ppLHCSR1-Vio and ppLHCSR1-Zea and is characterized by 30-40ps time constant. The spectrum of the quenching product is reminiscent of a carotenoid radical cation, suggesting that the pH-induced quenching mechanism is likely electron transfer from the carotenoid to the excited Chl a. In addition, a second quenching channel populating the S1 state of carotenoid via energy transfer from Chl is found exclusively in the ppLHCSR1-Zea at pH5. These results provide proof of principle that more than one quenching mechanism may operate in the LHC superfamily and also help understanding the photoprotective role of LHCSR proteins and the evolution of LHC antennae.


Assuntos
Bryopsida/metabolismo , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Nicotiana/metabolismo , Fotossíntese , Plantas Geneticamente Modificadas/metabolismo , Zeaxantinas/metabolismo , Bryopsida/genética , Bryopsida/efeitos da radiação , Transporte de Elétrons , Transferência de Energia , Concentração de Íons de Hidrogênio , Cinética , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Modelos Biológicos , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/efeitos da radiação , Ligação Proteica , Análise Espectral , Nicotiana/genética , Nicotiana/efeitos da radiação , Xantofilas/metabolismo
16.
Plant Cell ; 27(11): 3213-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26508763

RESUMO

Two LHC-like proteins, Photosystem II Subunit S (PSBS) and Light-Harvesting Complex Stress-Related (LHCSR), are essential for triggering excess energy dissipation in chloroplasts of vascular plants and green algae, respectively. The mechanism of quenching was studied in Physcomitrella patens, an early divergent streptophyta (including green algae and land plants) in which both proteins are active. PSBS was localized in grana together with photosystem II (PSII), but LHCSR was located mainly in stroma-exposed membranes together with photosystem I (PSI), and its distribution did not change upon high-light treatment. The quenched conformation can be preserved by rapidly freezing the high-light-treated tissues in liquid nitrogen. When using green fluorescent protein as an internal standard, 77K fluorescence emission spectra on isolated chloroplasts allowed for independent assessment of PSI and PSII fluorescence yield. Results showed that both photosystems underwent quenching upon high-light treatment in the wild type in contrast to mutants depleted of LHCSR, which lacked PSI quenching. Due to the contribution of LHCII, P. patens had a PSI antenna size twice as large with respect to higher plants. Thus, LHCII, which is highly abundant in stroma membranes, appears to be the target of quenching by LHCSR.


Assuntos
Bryopsida/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Bryopsida/efeitos dos fármacos , Bryopsida/efeitos da radiação , Bryopsida/ultraestrutura , Catálise/efeitos dos fármacos , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Digitonina/farmacologia , Glucosídeos/farmacologia , Luz , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos da radiação , Processos Fotoquímicos/efeitos dos fármacos , Espectrometria de Fluorescência , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Termodinâmica , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Tilacoides/ultraestrutura
17.
J Biol Chem ; 290(40): 24340-54, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26260788

RESUMO

Oxygenic photosynthetic organisms evolved mechanisms for thermal dissipation of energy absorbed in excess to prevent formation of reactive oxygen species. The major and fastest component, called non-photochemical quenching, occurs within the photosystem II antenna system by the action of two essential light-harvesting complex (LHC)-like proteins, photosystem II subunit S (PSBS) in plants and light-harvesting complex stress-related (LHCSR) in green algae and diatoms. In the evolutionary intermediate Physcomitrella patens, a moss, both gene products are active. These proteins, which are present in low amounts, are difficult to purify, preventing structural and functional analysis. Here, we report on the overexpression of the LHCSR1 protein from P. patens in the heterologous systems Nicotiana benthamiana and Nicotiana tabacum using transient and stable nuclear transformation. We show that the protein accumulated in both heterologous systems is in its mature form, localizes in the chloroplast thylakoid membranes, and is correctly folded with chlorophyll a and xanthophylls but without chlorophyll b, an essential chromophore for plants and algal LHC proteins. Finally, we show that recombinant LHCSR1 is active in quenching in vivo, implying that the recombinant protein obtained is a good material for future structural and functional studies.


Assuntos
Bryopsida/metabolismo , Clorofila/química , Complexos de Proteínas Captadores de Luz/biossíntese , Nicotiana/metabolismo , Xantofilas/química , Clorofila A , Luz , Complexos de Proteínas Captadores de Luz/química , Luteína/química , Fotoquímica , Fotossíntese , Complexo de Proteína do Fotossistema II/química , Folhas de Planta/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Frações Subcelulares , Tilacoides/química
18.
Plant Cell ; 25(9): 3519-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24014548

RESUMO

Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)-dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments.


Assuntos
Adaptação Fisiológica , Bryopsida/fisiologia , Complexos de Proteínas Captadores de Luz/metabolismo , Zeaxantinas/metabolismo , Vias Biossintéticas , Bryopsida/genética , Bryopsida/efeitos da radiação , Clorofila/metabolismo , Técnicas de Inativação de Genes , Luz , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Tilacoides/metabolismo , Xantofilas/metabolismo
19.
Plant Cell Physiol ; 53(10): 1815-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22952250

RESUMO

Drought and salt stress are major abiotic constraints affecting plant growth worldwide. Under these conditions, the production of reactive oxygen species (ROS) is a common phenomenon taking place mainly in chloroplasts, peroxisomes, mitochondria and apoplasts, especially when associated with high light stress. ROS are harmful because of their high reactivity to cell components, thereby leading to cytotoxicity and cell death. During the Ordovician and early Devonian period, photosynthetic organisms colonized terrestrial habitats, and the acquisition of desiccation tolerance has been a major component of their evolution. We have studied the capacity for acclimation to drought and salt stress of the moss Physcomitrella patens, a representative of the early land colonization stage. Exposure to high concentrations of NaCl and sorbitol strongly affects chloroplast development, the Chl content and the thylakoid protein composition in this moss. Under sublethal conditions (0.2 M NaCl and 0.4 M sorbitol), the photosynthetic apparatus of P. patens responds to oxidative stress by increasing non-photochemical quenching (NPQ). Surprisingly, the accumulation of PSBS and LHCSR, the two polypeptides essential for NPQ in P. patens, was not up-regulated in these conditions. Rather, an increased NPQ amplitude correlated with the overaccumulation of zeaxanthin and the presence of the enzyme violaxanthin de-epoxidase. These results suggest that the regulation of excess energy dissipation through control of PSBS and LHCSR is mainly driven by light conditions, while osmotic and salt stress act through acclimative regulation of the xanthophyll cycle. We conclude that regulation of the xanthophyll cycle is an important anticipatory strategy against photoinhibition by high light.


Assuntos
Aclimatação , Bryopsida/fisiologia , Bryopsida/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Secas , Luz , Pressão Osmótica , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Tolerância ao Sal , Cloreto de Sódio/farmacologia , Sorbitol/farmacologia , Proteínas das Membranas dos Tilacoides/metabolismo , Tilacoides/metabolismo , Xantofilas/metabolismo , Zeaxantinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...