Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Database (Oxford) ; 20232023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37410916

RESUMO

With the progression of the COVID-19 pandemic, large datasets of SARS-CoV-2 genome sequences were collected to closely monitor the evolution of the virus and identify the novel variants/strains. By analyzing genome sequencing data, health authorities can 'hunt' novel emerging variants of SARS-CoV-2 as early as possible, and then monitor their evolution and spread. We designed VariantHunter, a highly flexible and user-friendly tool for systematically monitoring the evolution of SARS-CoV-2 at global and regional levels. In VariantHunter, amino acid changes are analyzed over an interval of 4 weeks in an arbitrary geographical area (continent, country, or region); for every week in the interval, the prevalence is computed and changes are ranked based on their increase or decrease in prevalence. VariantHunter supports two main types of analysis: lineage-independent and lineage-specific. The former considers all the available data and aims to discover new viral variants. The latter evaluates specific lineages/viral variants to identify novel candidate designations (sub-lineages and sub-variants). Both analyses use simple statistics and visual representations (diffusion charts and heatmaps) to track viral evolution. A dataset explorer allows users to visualize available data and refine their selection. VariantHunter is a web application free to all users. The two types of supported analysis (lineage-independent and lineage-specific) allow user-friendly monitoring of the viral evolution, empowering genomic surveillance without requiring any computational background. Database URL http://gmql.eu/variant_hunter/.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , Mapeamento Cromossômico
2.
PLoS One ; 18(4): e0281052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37115764

RESUMO

BACKGROUND: SARS-CoV-2 viremia has been found to be a potential prognostic factor in patients hospitalized for COVID-19. OBJECTIVE: We aimed to assess the association between SARS-CoV-2 viremia and mortality in COVID-19 hospitalized patients during different epidemic periods. METHODS: A prospective COVID-19 registry was queried to extract all COVID-19 patients with an available SARS-CoV-2 viremia performed at hospital admission between March 2020 and January 2022. SARS-CoV-2 viremia was assessed by means of GeneFinderTM COVID-19 Plus RealAmp Kit assay and SARS-CoV-2 ELITe MGB® Kit using <45 cycle threshold to define positivity. Uni and multivariable logistic regression model were built to assess the association between SARS-CoV-2 positive viremia and death. RESULTS: Four hundred and forty-five out of 2,822 COVID-19 patients had an available SARS-CoV-2 viremia, prevalently males (64.9%) with a median age of 65 years (IQR 55-75). Patients with a positive SARS-CoV-2 viremia (86/445; 19.3%) more frequently presented with a severe or critical disease (67.4% vs 57.1%) when compared to those with a negative SARS-CoV-2 viremia. Deceased subjects (88/445; 19.8%) were older [75 (IQR 68-82) vs 63 (IQR 54-72)] and showed more frequently a detectable SARS-CoV-2 viremia at admission (60.2% vs 22.7%) when compared to survivors. In univariable analysis a positive SARS-CoV-2 viremia was associated with a higher odd of death [OR 5.16 (95% CI 3.15-8.45)] which was confirmed in the multivariable analysis adjusted for age, biological sex and, disease severity [AOR 6.48 (95% CI 4.05-10.45)]. The association between positive SARS-CoV-2 viremia and death was consistent in the period 1 February 2021-31 January 2022 [AOR 5.86 (95% CI 3.43-10.16)] and in subgroup analysis according to disease severity: mild/moderate [AOR 6.45 (95% CI 2.84-15.17)] and severe/critical COVID-19 patients [AOR 6.98 (95% CI 3.68-13.66)]. CONCLUSIONS: SARS-CoV-2 viremia resulted associated to COVID-19 mortality and should be considered in the initial assessment of COVID-19 hospitalized patients.


Assuntos
COVID-19 , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , SARS-CoV-2 , Viremia , Hospitalização , Estudos Prospectivos
3.
Genome Biol ; 24(1): 79, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072822

RESUMO

A promising alternative to comprehensively performing genomics experiments is to, instead, perform a subset of experiments and use computational methods to impute the remainder. However, identifying the best imputation methods and what measures meaningfully evaluate performance are open questions. We address these questions by comprehensively analyzing 23 methods from the ENCODE Imputation Challenge. We find that imputation evaluations are challenging and confounded by distributional shifts from differences in data collection and processing over time, the amount of available data, and redundancy among performance measures. Our analyses suggest simple steps for overcoming these issues and promising directions for more robust research.


Assuntos
Algoritmos , Epigenômica , Genômica/métodos
4.
Comput Struct Biotechnol J ; 20: 4238-4250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35945925

RESUMO

The inflation of SARS-CoV-2 lineages with a high number of accumulated mutations (such as the recent case of Omicron) has risen concerns about the evolutionary capacity of this virus. Here, we propose a computational study to examine non-synonymous mutations gathered within genomes of SARS-CoV-2 from the beginning of the pandemic until February 2022. We provide both qualitative and quantitative descriptions of such corpus, focusing on statistically significant co-occurring and mutually exclusive mutations within single genomes. Then, we examine in depth the distributions of mutations over defined lineages and compare those of frequently co-occurring mutation pairs. Based on this comparison, we study mutations' convergence/divergence on the phylogenetic tree. As a result, we identify 1,818 co-occurring pairs of non-synonymous mutations showing at least one event of convergent evolution and 6,625 co-occurring pairs with at least one event of divergent evolution. Notable examples of both types are shown by means of a tree-based representation of lineages, visually capturing mutations' behaviors. Our method confirms several well-known cases; moreover, the provided evidence suggests that our workflow can explain aspects of the future mutational evolution of SARS-CoV-2.

5.
BioTech (Basel) ; 11(1)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35822815

RESUMO

With the spread of COVID-19, sequencing laboratories started to share hundreds of sequences daily. However, the lack of a commonly agreed standard across deposition databases hindered the exploration and study of all the viral sequences collected worldwide in a practical and homogeneous way. During the first months of the pandemic, we developed an automatic procedure to collect, transform, and integrate viral sequences of SARS-CoV-2, MERS, SARS-CoV, Ebola, and Dengue from four major database institutions (NCBI, COG-UK, GISAID, and NMDC). This data pipeline allowed the creation of the data exploration interfaces VirusViz and EpiSurf, as well as ViruSurf, one of the largest databases of integrated viral sequences. Almost two years after the first release of the repository, the original pipeline underwent a thorough refinement process and became more efficient, scalable, and general (currently, it also includes epitopes from the IEDB). Thanks to these improvements, we constantly update and expand our integrated repository, encompassing about 9.1 million SARS-CoV-2 sequences at present (March 2022). This pipeline made it possible to design and develop fundamental resources for any researcher interested in understanding the biological mechanisms behind the viral infection. In addition, it plays a crucial role in many analytic and visualization tools, such as ViruSurf, EpiSurf, VirusViz, and VirusLab.

6.
Bioinformatics ; 38(7): 1988-1994, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35040923

RESUMO

MOTIVATION: The ongoing evolution of SARS-CoV-2 and the rapid emergence of variants of concern at distinct geographic locations have relevant implications for the implementation of strategies for controlling the COVID-19 pandemic. Combining the growing body of data and the evidence on potential functional implications of SARS-CoV-2 mutations can suggest highly effective methods for the prioritization of novel variants of potential concern, e.g. increasing in frequency locally and/or globally. However, these analyses may be complex, requiring the integration of different data and resources. We claim the need for a streamlined access to up-to-date and high-quality genome sequencing data from different geographic regions/countries, and the current lack of a robust and consistent framework for the evaluation/comparison of the results. RESULTS: To overcome these limitations, we developed ViruClust, a novel tool for the comparison of SARS-CoV-2 genomic sequences and lineages in space and time. ViruClust is made available through a powerful and intuitive web-based user interface. Sophisticated large-scale analyses can be executed with a few clicks, even by users without any computational background. To demonstrate potential applications of our method, we applied ViruClust to conduct a thorough study of the evolution of the most prevalent lineage of the Delta SARS-CoV-2 variant, and derived relevant observations. By allowing the seamless integration of different types of functional annotations and the direct comparison of viral genomes and genetic variants in space and time, ViruClust represents a highly valuable resource for monitoring the evolution of SARS-CoV-2, facilitating the identification of variants and/or mutations of potential concern. AVAILABILITY AND IMPLEMENTATION: ViruClust is openly available at http://gmql.eu/viruclust/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Mapeamento Cromossômico
7.
Artigo em Inglês | MEDLINE | ID: mdl-33270566

RESUMO

Breast Cancer comprises multiple subtypes implicated in prognosis. Existing stratification methods rely on the expression quantification of small gene sets. Next Generation Sequencing promises large amounts of omic data in the next years. In this scenario, we explore the potential of machine learning and, particularly, deep learning for breast cancer subtyping. Due to the paucity of publicly available data, we leverage on pan-cancer and non-cancer data to design semi-supervised settings. We make use of multi-omic data, including microRNA expressions and copy number alterations, and we provide an in-depth investigation of several supervised and semi-supervised architectures. Obtained accuracy results show simpler models to perform at least as well as the deep semi-supervised approaches on our task over gene expression data. When multi-omic data types are combined together, performance of deep models shows little (if any) improvement in accuracy, indicating the need for further analysis on larger datasets of multi-omic data as and when they become available. From a biological perspective, our linear model mostly confirms known gene-subtype annotations. Conversely, deep approaches model non-linear relationships, which is reflected in a more varied and still unexplored set of representative omic features that may prove useful for breast cancer subtyping.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Neoplasias da Mama/genética , Variações do Número de Cópias de DNA , Feminino , Humanos , Aprendizado de Máquina , Aprendizado de Máquina Supervisionado
8.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 1956-1967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34166199

RESUMO

Traditional drug experiments to find synergistic drug pairs are time-consuming and expensive due to the numerous possible combinations of drugs that have to be examined. Thus, computational methods that can give suggestions for synergistic drug investigations are of great interest. Here, we propose a Non-negative Matrix Tri-Factorization (NMTF) based approach that leverages the integration of different data types for predicting synergistic drug pairs in multiple specific cell lines. Our computational framework relies on a network-based representation of available data about drug synergism, which also allows integrating genomic information about cell lines. We computationally evaluate the performances of our method in finding missing relationships between synergistic drug pairs and cell lines, and in computing synergy scores between drug pairs in a specific cell line, as well as we estimate the benefit of adding cell line genomic data to the network. Our approach obtains very good performance (Average Precision Score equal to 0.937, Pearson's correlation coefficient equal to 0.760) when cell line genomic data and rich data about synergistic drugs in a cell line are considered. Finally, we systematically searched our top-scored predictions in the available literature and in the NCI ALMANAC, a well-known database of drug combination experiments, proving the goodness of our findings.


Assuntos
Algoritmos , Biologia Computacional , Biologia Computacional/métodos , Bases de Dados Factuais , Sinergismo Farmacológico , Genômica
9.
Front Bioeng Biotechnol ; 10: 945474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686258

RESUMO

Mesenchymal stem cells (MSCs) are known to be ideal candidates for clinical applications where not only regenerative potential but also immunomodulation ability is fundamental. Over the last years, increasing efforts have been put into the design and fabrication of 3D synthetic niches, conceived to emulate the native tissue microenvironment and aiming at efficiently controlling the MSC phenotype in vitro. In this panorama, our group patented an engineered microstructured scaffold, called Nichoid. It is fabricated through two-photon polymerization, a technique enabling the creation of 3D structures with control of scaffold geometry at the cell level and spatial resolution beyond the diffraction limit, down to 100 nm. The Nichoid's capacity to maintain higher levels of stemness as compared to 2D substrates, with no need for adding exogenous soluble factors, has already been demonstrated in MSCs, neural precursors, and murine embryonic stem cells. In this work, we evaluated how three-dimensionality can influence the whole gene expression profile in rat MSCs. Our results show that at only 4 days from cell seeding, gene activation is affected in a significant way, since 654 genes appear to be differentially expressed (392 upregulated and 262 downregulated) between cells cultured in 3D Nichoids and in 2D controls. The functional enrichment analysis shows that differentially expressed genes are mainly enriched in pathways related to the actin cytoskeleton, extracellular matrix (ECM), and, in particular, cell adhesion molecules (CAMs), thus confirming the important role of cell morphology and adhesions in determining the MSC phenotype. In conclusion, our results suggest that the Nichoid, thanks to its exclusive architecture and 3D cell adhesion properties, is not only a useful tool for governing cell stemness but could also be a means for controlling immune-related MSC features specifically involved in cell migration.

10.
Database (Oxford) ; 20212021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34585726

RESUMO

EpiSurf is a Web application for selecting viral populations of interest and then analyzing how their amino acid changes are distributed along epitopes. Viral sequences are searched within ViruSurf, which stores curated metadata and amino acid changes imported from the most widely used deposition sources for viral databases (GenBank, COVID-19 Genomics UK (COG-UK) and Global initiative on sharing all influenza data (GISAID)). Epitopes are searched within the open source Immune Epitope Database or directly proposed by users by indicating their start and stop positions in the context of a given viral protein. Amino acid changes of selected populations are joined with epitopes of interest; a result table summarizes, for each epitope, statistics about the overlapping amino acid changes and about the sequences carrying such alterations. The results may also be inspected by the VirusViz Web application; epitope regions are highlighted within the given viral protein, and changes can be comparatively inspected. For sequences mutated within the epitope, we also offer a complete view of the distribution of amino acid changes, optionally grouped by the location, collection date or lineage. Thanks to these functionalities, EpiSurf supports the user-friendly testing of epitope conservancy within selected populations of interest, which can be of utmost relevance for designing vaccines, drugs or serological assays. EpiSurf is available at two endpoints. Database URL: http://gmql.eu/episurf/ (for searching GenBank and COG-UK sequences) and http://gmql.eu/episurf_gisaid/ (for GISAID sequences).


Assuntos
Substituição de Aminoácidos , Antígenos Virais/química , Epitopos/química , Internet , Metadados , SARS-CoV-2/química , Ferramenta de Busca , Software , Aminoácidos/química , Aminoácidos/imunologia , Antígenos Virais/imunologia , COVID-19/virologia , Epitopos/imunologia , Humanos , SARS-CoV-2/imunologia
11.
Nucleic Acids Res ; 49(15): e90, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34107016

RESUMO

Variant visualization plays an important role in supporting the viral evolution analysis, extremely valuable during the COVID-19 pandemic. VirusViz is a web-based application for comparing variants of selected viral populations and their sub-populations; it is primarily focused on SARS-CoV-2 variants, although the tool also supports other viral species (SARS-CoV, MERS-CoV, Dengue, Ebola). As input, VirusViz imports results of queries extracting variants and metadata from the large database ViruSurf, which integrates information about most SARS-CoV-2 sequences publicly deposited worldwide. Moreover, VirusViz accepts sequences of new viral populations as multi-FASTA files plus corresponding metadata in CSV format; a bioinformatic pipeline builds a suitable input for VirusViz by extracting the nucleotide and amino acid variants. Pages of VirusViz provide metadata summarization, variant descriptions, and variant visualization with rich options for zooming, highlighting variants or regions of interest, and switching from nucleotides to amino acids; sequences can be grouped, groups can be comparatively analyzed. For SARS-CoV-2, we manually collect mutations with known or predicted levels of severity/virulence, as indicated in linked research articles; such critical mutations are reported when observed in sequences. The system includes light-weight project management for downloading, resuming, and merging data analysis sessions. VirusViz is freely available at http://gmql.eu/virusviz/.


Assuntos
COVID-19/virologia , Visualização de Dados , SARS-CoV-2/química , SARS-CoV-2/genética , Sequência de Aminoácidos , Sequência de Bases , Bases de Dados Factuais , Humanos , Bases de Conhecimento , SARS-CoV-2/classificação , África do Sul/epidemiologia , Estados Unidos/epidemiologia
12.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34020536

RESUMO

MOTIVATION: With the spreading of biological and clinical uses of next-generation sequencing (NGS) data, many laboratories and health organizations are facing the need of sharing NGS data resources and easily accessing and processing comprehensively shared genomic data; in most cases, primary and secondary data management of NGS data is done at sequencing stations, and sharing applies to processed data. Based on the previous single-instance GMQL system architecture, here we review the model, language and architectural extensions that make the GMQL centralized system innovatively open to federated computing. RESULTS: A well-designed extension of a centralized system architecture to support federated data sharing and query processing. Data is federated thanks to simple data sharing instructions. Queries are assigned to execution nodes; they are translated into an intermediate representation, whose computation drives data and processing distributions. The approach allows writing federated applications according to classical styles: centralized, distributed or externalized. AVAILABILITY: The federated genomic data management system is freely available for non-commercial use as an open source project at http://www.bioinformatics.deib.polimi.it/FederatedGMQLsystem/. CONTACT: {arif.canakoglu, pietro.pinoli}@polimi.it.


Assuntos
Conjuntos de Dados como Assunto , Genômica , Disseminação de Informação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Linguagens de Programação
13.
BMC Bioinformatics ; 22(1): 250, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33992077

RESUMO

BACKGROUND: A pair of genes is defined as synthetically lethal if defects on both cause the death of the cell but a defect in only one of the two is compatible with cell viability. Ideally, if A and B are two synthetic lethal genes, inhibiting B should kill cancer cells with a defect on A, and should have no effects on normal cells. Thus, synthetic lethality can be exploited for highly selective cancer therapies, which need to exploit differences between normal and cancer cells. RESULTS: In this paper, we present a new method for predicting synthetic lethal (SL) gene pairs. As neighbouring genes in the genome have highly correlated profiles of copy number variations (CNAs), our method clusters proximal genes with a similar CNA profile, then predicts mutually exclusive group pairs, and finally identifies the SL gene pairs within each group pairs. For mutual-exclusion testing we use a graph-based method which takes into account the mutation frequencies of different subjects and genes. We use two different methods for selecting the pair of SL genes; the first is based on the gene essentiality measured in various conditions by means of the "Gene Activity Ranking Profile" GARP score; the second leverages the annotations of gene to biological pathways. CONCLUSIONS: This method is unique among current SL prediction approaches, it reduces false-positive SL predictions compared to previous methods, and it allows establishing explicit collateral lethality relationship of gene pairs within mutually exclusive group pairs.


Assuntos
Variações do Número de Cópias de DNA , Genes Letais , DNA
14.
Eur J Hum Genet ; 29(5): 745-759, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33456056

RESUMO

Within the GEN-COVID Multicenter Study, biospecimens from more than 1000 SARS-CoV-2 positive individuals have thus far been collected in the GEN-COVID Biobank (GCB). Sample types include whole blood, plasma, serum, leukocytes, and DNA. The GCB links samples to detailed clinical data available in the GEN-COVID Patient Registry (GCPR). It includes hospitalized patients (74.25%), broken down into intubated, treated by CPAP-biPAP, treated with O2 supplementation, and without respiratory support (9.5%, 18.4%, 31.55% and 14.8, respectively); and non-hospitalized subjects (25.75%), either pauci- or asymptomatic. More than 150 clinical patient-level data fields have been collected and binarized for further statistics according to the organs/systems primarily affected by COVID-19: heart, liver, pancreas, kidney, chemosensors, innate or adaptive immunity, and clotting system. Hierarchical clustering analysis identified five main clinical categories: (1) severe multisystemic failure with either thromboembolic or pancreatic variant; (2) cytokine storm type, either severe with liver involvement or moderate; (3) moderate heart type, either with or without liver damage; (4) moderate multisystemic involvement, either with or without liver damage; (5) mild, either with or without hyposmia. GCB and GCPR are further linked to the GCGDR, which includes data from whole-exome sequencing and high-density SNP genotyping. The data are available for sharing through the Network for Italian Genomes, found within the COVID-19 dedicated section. The study objective is to systematize this comprehensive data collection and begin identifying multi-organ involvement in COVID-19, defining genetic parameters for infection susceptibility within the population, and mapping genetically COVID-19 severity and clinical complexity among patients.


Assuntos
Bancos de Espécimes Biológicos , COVID-19/genética , Predisposição Genética para Doença , Sistema de Registros , SARS-CoV-2 , Manejo de Espécimes , Adolescente , Adulto , COVID-19/epidemiologia , Feminino , Humanos , Itália , Masculino
15.
BioTech (Basel) ; 10(4)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-35822801

RESUMO

Since the beginning of 2020, the COVID-19 pandemic has posed unprecedented challenges to viral data analysis and connected host disease diagnostic methods. We propose VirusLab, a flexible system for analysing SARS-CoV-2 viral sequences and relating them to metadata or clinical information about the host. VirusLab capitalizes on two existing resources: ViruSurf, a database of public SARS-CoV-2 sequences supporting metadata-driven search, and VirusViz, a tool for visual analysis of search results. VirusLab is designed for taking advantage of these resources within a server-side architecture that: (i) covers pipelines based on approaches already in use (ARTIC, Galaxy) but entirely cutomizable upon user request; (ii) predigests analysis of raw sequencing data from different platforms (Oxford Nanopore and Illumina); (iii) gives access to public archives datasets; (iv) supplies user-friendly reporting - making it a tool that can also be integrated into a business environment. VirusLab can be installed and hosted within the premises of any organization where information about SARS-CoV-2 sequences can be safely integrated with information about hosts (e.g., clinical metadata). A system such as VirusLab is not currently available in the landscape of similar providers: our results show that VirusLab is a powerful tool to generate tabular/graphical and machine readable reports that can be integrated in more complex pipelines. We foresee that the proposed system can support many research-oriented and therapeutic scenarios within hospitals or the tracing of viral sequences and their mutational processes within organizations for viral surveillance.

16.
Brief Bioinform ; 22(2): 664-675, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33348368

RESUMO

With the outbreak of the COVID-19 disease, the research community is producing unprecedented efforts dedicated to better understand and mitigate the effects of the pandemic. In this context, we review the data integration efforts required for accessing and searching genome sequences and metadata of SARS-CoV2, the virus responsible for the COVID-19 disease, which have been deposited into the most important repositories of viral sequences. Organizations that were already present in the virus domain are now dedicating special interest to the emergence of COVID-19 pandemics, by emphasizing specific SARS-CoV2 data and services. At the same time, novel organizations and resources were born in this critical period to serve specifically the purposes of COVID-19 mitigation while setting the research ground for contrasting possible future pandemics. Accessibility and integration of viral sequence data, possibly in conjunction with the human host genotype and clinical data, are paramount to better understand the COVID-19 disease and mitigate its effects. Few examples of host-pathogen integrated datasets exist so far, but we expect them to grow together with the knowledge of COVID-19 disease; once such datasets will be available, useful integrative surveillance mechanisms can be put in place by observing how common variants distribute in time and space, relating them to the phenotypic impact evidenced in the literature.


Assuntos
COVID-19/terapia , COVID-19/epidemiologia , COVID-19/virologia , Genes Virais , Humanos , Armazenamento e Recuperação da Informação , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
17.
Nucleic Acids Res ; 49(D1): D817-D824, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33045721

RESUMO

ViruSurf, available at http://gmql.eu/virusurf/, is a large public database of viral sequences and integrated and curated metadata from heterogeneous sources (RefSeq, GenBank, COG-UK and NMDC); it also exposes computed nucleotide and amino acid variants, called from original sequences. A GISAID-specific ViruSurf database, available at http://gmql.eu/virusurf_gisaid/, offers a subset of these functionalities. Given the current pandemic outbreak, SARS-CoV-2 data are collected from the four sources; but ViruSurf contains other virus species harmful to humans, including SARS-CoV, MERS-CoV, Ebola and Dengue. The database is centered on sequences, described from their biological, technological and organizational dimensions. In addition, the analytical dimension characterizes the sequence in terms of its annotations and variants. The web interface enables expressing complex search queries in a simple way; arbitrary search queries can freely combine conditions on attributes from the four dimensions, extracting the resulting sequences. Several example queries on the database confirm and possibly improve results from recent research papers; results can be recomputed over time and upon selected populations. Effective search over large and curated sequence data may enable faster responses to future threats that could arise from new viruses.


Assuntos
COVID-19/prevenção & controle , Biologia Computacional/métodos , Curadoria de Dados/métodos , Bases de Dados Genéticas , Genoma Viral/genética , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Variação Genética , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Pandemias , SARS-CoV-2/fisiologia , Interface Usuário-Computador
18.
Biol Direct ; 15(1): 13, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938476

RESUMO

BACKGROUND: Inferring the mechanisms that drive transcriptional regulation is of great interest to biologists. Generally, methods that predict physical interactions between transcription factors (TFs) based on positional information of their binding sites (e.g. chromatin immunoprecipitation followed by sequencing (ChIP-Seq) experiments) cannot distinguish between different kinds of interaction at the same binding spots, such as co-operation and competition. RESULTS: In this work, we present the Network-Augmented Transcriptional Interaction and Coregulation Analyser (NAUTICA), which employs information from protein-protein interaction (PPI) networks to assign TF-TF interaction candidates to one of three classes: competition, co-operation and non-interactions. NAUTICA filters available PPI network edges and fits a prediction model based on the number of shared partners in the PPI network between two candidate interactors. CONCLUSIONS: NAUTICA improves on existing positional information-based TF-TF interaction prediction results, demonstrating how PPI information can improve the quality of TF interaction prediction. NAUTICA predictions - both co-operations and competitions - are supported by literature investigation, providing evidence on its capability of providing novel interactions of both kinds. REVIEWERS: This article was reviewed by Zoltán Hegedüs and Endre Barta.


Assuntos
Biologia Molecular/instrumentação , Mapas de Interação de Proteínas , Fatores de Transcrição/química , Sítios de Ligação
19.
PLoS One ; 15(1): e0227180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945090

RESUMO

Recent evidence shows that the disruption of constitutive insulated neighbourhoods might lead to oncogene dysregulation. We present here a systematic pan-cancer characterisation of the associations between constitutive boundaries and genome alterations in cancer. Specifically, we investigate the enrichment of somatic mutation, abnormal methylation, and copy number alteration events in the proximity of CTCF bindings overlapping with topological boundaries (junctions) in 26 cancer types. Focusing on CTCF motifs that are both in-boundary (overlapping with junctions) and active (overlapping with peaks of CTCF expression), we find a significant enrichment of somatic mutations in several cancer types. Furthermore, mutated junctions are significantly conserved across cancer types, and we also observe a positive selection of transversions rather than transitions in many cancer types. We also analyzed the mutational signature found on the different classes of CTCF motifs, finding some signatures (such as SBS26) to have a higher weight within in-boundary than off-bounday motifs. Regarding methylation, we find a significant number of over-methylated active in-boundary CTCF motifs in several cancer types; similarly to somatic-mutated junctions, they also have a significant conservation across cancer types. Finally, in several cancer types we observe that copy number alterations tend to overlap with active junctions more often than in matched normal samples. While several articles have recently reported a mutational enrichment at CTCF binding sites for specific cancer types, our analysis is pan-cancer and investigates abnormal methylation and copy number alterations in addition to somatic mutations. Our method is fully replicable and suggests several follow-up tumour-specific analyses.


Assuntos
Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Análise Mutacional de DNA/métodos , Epigênese Genética/genética , Elementos Isolantes/genética , Neoplasias/genética , Mutação Puntual , Motivos de Aminoácidos/genética , Sítios de Ligação/genética , Cromossomos Humanos Par 11/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA , Éxons/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Taxa de Mutação , Regiões Promotoras Genéticas/genética
20.
Pac Symp Biocomput ; 25: 250-261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31797601

RESUMO

MicroRNAs are a class of small non-coding RNA molecules with great importance for regulating a large number of diverse biological processes in health and disease, mostly by binding to complementary microRNA response elements (MREs) on protein-coding messenger RNAs and other non-coding RNAs and subsequently inducing their degradation. A growing body of evidence indicates that the dysregulation of certain microRNAs may either drive or suppress oncogenesis.The seed region of a microRNA is of crucial importance for its target recognition. Mutations in these seed regions may disrupt the binding of microRNAs to their target genes. In this study, we investigate the theoretical impact of cancer-associated mutagenic processes and their mutational signatures on microRNA seeds and their MREs. To our knowledge, this is the first study which provides a probabilistic framework for microRNA and MRE sequence alteration analysis based on mutational signatures and computationally assessing the disruptive impact of mutational signatures on human microRNA-target interactions.


Assuntos
MicroRNAs , Biologia Computacional , Humanos , MicroRNAs/genética , Mutação , RNA Mensageiro , Elementos de Resposta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...