Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Brain Res Bull ; 208: 110898, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360152

RESUMO

The involvement of androgens in the regulation of energy metabolism has been demonstrated. The main objective of the present research was to study the involvement of androgens in both the programming of energy metabolism and the regulatory peptides associated with feeding. For this purpose, androgen receptors and the main metabolic pathways of testosterone were inhibited during the first five days of postnatal life in male and female Wistar rats. Pups received a daily s.c. injection from the day of birth, postnatal day (P) 1, to P5 of Flutamide (a competitive inhibitor of androgen receptors), Letrozole (an aromatase inhibitor), Finasteride (a 5-alpha-reductase inhibitor) or vehicle. Body weight, food intake and fat pads were measured. Moreover, hypothalamic Agouti-related peptide (AgRP), neuropeptide Y (NPY), orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay. The inhibition of androgenic activity during the first five days of life produced a significant decrease in body weight in females at P90 but did not affect this parameter in males. Moreover, the inhibition of aromatase decreased hypothalamic AgRP mRNA levels in males while the inhibition of 5α-reductase decreased hypothalamic AgRP and orexin mRNA levels in female rats. Finally, food intake and visceral fat, but not subcutaneous fat, were affected in both males and females depending on which testosterone metabolic pathway was inhibited. Our results highlight the differential involvement of androgens in the programming of energy metabolism as well as the AgRP and orexin systems during development in male and female rats.


Assuntos
Androgênios , Receptores Androgênicos , Ratos , Animais , Masculino , Feminino , Orexinas/metabolismo , Androgênios/farmacologia , Androgênios/metabolismo , Ratos Wistar , Proteína Relacionada com Agouti/genética , Receptores Androgênicos/metabolismo , Peso Corporal/fisiologia , Hipotálamo/metabolismo , Pró-Opiomelanocortina/genética , RNA Mensageiro/metabolismo , Testosterona/farmacologia , Oxirredutases/metabolismo
2.
Mol Cell Endocrinol ; 570: 111933, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080379

RESUMO

In the present work we analyzed the effects of postnatal exposure to two doses of genistein (10 µg/g or 50 µg/g) from postnatal (P) day 6 to P13, on the morphology of the arcuate nucleus (Arc). The analyses of Arc coronal brain sections at 90 days showed that the ArcMP had higher values in volume, Nissl-stained neurons and GPER-ir neurons in males than in females and the treatment with genistein abolished these sex differences in most of the parameters studied. Moreover, in males, but not in females, the GPER-ir neurons decreased in the ArcMP but increased in the ArcL with both doses of genistein. In the ArcLP, GPER-ir population increased with the lowest doses and decreased with the highest one in males. Our results confirm that the Arc subdivisions have differential vulnerability to the effects of genistein during development, depending on which neuromorphological parameters, dose and sex are analyzed.


Assuntos
Núcleo Arqueado do Hipotálamo , Genisteína , Ratos , Animais , Feminino , Masculino , Genisteína/farmacologia , Hipotálamo , Neurônios , Caracteres Sexuais
3.
Behav Brain Res ; 436: 114055, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35964782

RESUMO

The objective of this study was to investigate the orexin and POMC populations in the hypothalamic nuclei of male Wistar rats after the activity-based anorexia (ABA) procedure. Four groups were established based on food restriction and activity: activity (A), ABA, diet (D) and control (C). The ABA protocol consisted of free access to a running wheel for a period of 22 h and access to food for 1 h. When the animals in the ABA group reached the ABA criterion, were sacrificed, and their brains were collected and serially sectioned. The free-floating sections were processed for orexin and POMC immunostaining. The number of orexin A-ir cells in the perifornical-dorsomedial-hypothalamus continuum (PFD) and lateral hypothalamus (LH) and the number of POMC-ir cells in the arcuate nucleus (Arc) were estimated. Data on food intake, body weight and wheel turns were also analyzed. The ABA procedure caused a significant decrease in body weight along with a significant increase in activity. Moreover, at the end of the ABA procedure, the number of POMC-ir cells decreased in the Arc in the A group, and significantly more in the ABA group, and the number of orexin A-ir positive cells decreased in the LH in D and ABA groups. The differential decrease in POMC in the ABA group emphasizes the importance of the melanocortin system in the maintenance of ABA, but more research is needed to elucidate the involvement of this peptide in the mechanism that promotes and maintains anorexia nervosa and how increased activity may interact with all these processes.


Assuntos
Anorexia , Pró-Opiomelanocortina , Animais , Peso Corporal , Ingestão de Alimentos , Hipotálamo , Masculino , Melanocortinas , Atividade Motora , Orexinas , Ratos , Ratos Wistar
4.
Neurosci Res ; 184: 54-61, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35948154

RESUMO

A principal animal paradigm employed in Anorexia Nervosa (AN) study is the activity-based anorexia (ABA) model. The model's efficacy in recapitulating the core features of AN in humans allows for the study of the parameters involved in the disorder. The current study examined the susceptibility to the ABA protocol in the presence of a significant stressor (maternal separation) in male and female Sprague Dawley rats. More importantly, we analysed the sex-differences on activity levels during different periods of the ABA protocol to determine the period(s) influencing the most pathological weight loss. Both components of the ABA protocol contributed to the subjects' bodyweight loss. Stress in the first two weeks of development conferred a protective effect in males. Time spent and activity levels on the running wheel were higher in females compared to males. Hyperactivity in ABA subjects was observed during the food-anticipatory activity (FAA) and postprandial activity in males and during the FAA and nocturnal activity periods in females. This study aids in understanding the effect of intensity of activity during specific periods on the pathological weight loss in ABA rats. These observations are informative for therapies aimed at ameliorating body mass index in AN patients.


Assuntos
Anorexia , Privação Materna , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Atividade Motora , Ratos , Ratos Sprague-Dawley , Redução de Peso
5.
Front Neuroanat ; 16: 896732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783578

RESUMO

Background: Malnutrition during the early stages of development produces alterations that can compromise the functioning of the hypothalamic circuits that regulate food intake. The purpose of this study is to analyze the effects that a low-protein and low-calorie diet has on the morphology of the arcuate nucleus (ARC) of the hypothalamus in newborn male and female rats. Methods: On gestational day 6 (G6), six pregnant rats were divided into two groups. One group was made up of three pregnant rats, which were fed ad libitum with a control diet (20% casein), and the other one was made up of three pregnant rats, which were fed ad libitum with a low-protein diet (8% casein) and 30% of a calorie-restricted diet. On the day of birth, pups were sacrificed, resulting in four experimental groups: control male, control female, low-protein and low-calorie diet male, and low-protein and low-calorie diet female (n = 5 in each group). The volume and number of neurons, together with the neuronal density and number of apoptotic cells, were measured. Results: Males on a low-protein and low-calorie diet showed a significant increase in the number of neurons and in the neuronal density of the ARC with regard to the rest of the groups studied. These increases were also reflected in the posterior part of the nucleus. Although the existence of sexual dimorphism was not detected in any of the parameters studied in the control groups, the number of neurons and neuronal density showed differences between males and females fed with a low-protein and low-calorie diets due to the increase in the number of neurons shown by the male. No significant differences were found in the number of apoptotic cells. Conclusion: Our results show that a low-protein and low-calorie diet during the prenatal stage produces alterations in the ARC of the hypothalamus in newborn animals and, more importantly, that the effects of malnutrition are evident in males but not in females. Therefore, it is essential to follow a balanced diet during the early stages of life to ensure optimal development of the neural circuits that regulate eating.

6.
Front Neuroanat ; 16: 902218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35815333

RESUMO

Sex steroid hormones, such as androgens and estrogens, are known to exert organizational action at perinatal periods and activational effects during adulthood on the brain and peripheral tissues. These organizational effects are essential for the establishment of biological axes responsible for regulating behaviors, such as reproduction, stress, and emotional responses. Estradiol (E2), testosterone, and their metabolites exert their biological action through genomic and non-genomic mechanisms, bounding to canonical receptors, such as estrogen receptor (ER)α, ERß, and androgen receptor (AR) or membrane receptors, such as the G protein-coupled estrogen receptor (GPER), respectively. Expression of ERs and AR was found to be different between males and females both in the brain and peripheral tissues, suggesting a sex-dependent regulation of their expression and function. Therefore, studying the ERs and AR distribution and expression levels is key to understand the central and peripheral role of sex steroids in the establishment of sex-specific behaviors in males and females. We investigated the organizational effects of estrogens and androgens in the pituitary and adrenal glands of adult male and female rats. For this, selective blockade of AR with flutamide or 5α-reductase with finasteride or aromatase with letrozole during the first 5 days of life has been performed in male and female pups and then quantification of ERs and AR expression in both glands has been carried out in adulthood. Data show that inhibition of dihydrotestosterone (DHT) and E2 production during the first five postnatal days mainly decreases the ER expression in male to female values and AR expression in female to male levels in the pituitary gland and increases AR expression in female to male levels in the adrenal gland. In contrast, blocking the action of androgens differentially modulates the ERs in males and females and decreases AR in both males and females in both glands. Altogether, the results suggest that neonatal modifications of the androgen and estrogen pathways can potentially lead to permanent modifications of the neuroendocrine functions of the pituitary and adrenal glands in the adulthood of both sexes.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34281107

RESUMO

In recent years, the worldwide prevalence of overweight and obesity among adults and children has dramatically increased. The conventional model regarding the onset of obesity is based on an imbalance between energy intake and expenditure. However, other possible environmental factors involved, such as the exposure to chemicals like pesticides, cannot be discarded. These compounds could act as endocrine-disrupting chemicals (EDC) that may interfere with hormone activity related to several mechanisms involved in body weight control. The main objective of this study was to systematically review the data provided in the scientific literature for a possible association between prenatal and postnatal exposure to pesticides and obesity in offspring. A total of 25 human and 9 animal studies were analyzed. The prenatal, perinatal, and postnatal exposure to organophosphate, organochlorine, pyrethroid, neonicotinoid, and carbamate, as well as a combined pesticide exposure was reviewed. This systematic review reveals that the effects of pesticide exposure on body weight are mostly inconclusive, finding conflicting results in both humans and experimental animals. The outcomes reviewed are dependent on many factors, including dosage and route of administration, species, sex, and treatment duration. More research is needed to effectively evaluate the impact of the combined effects of different pesticides on human health.


Assuntos
Praguicidas , Piretrinas , Adulto , Criança , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Humanos , Neonicotinoides , Obesidade/induzido quimicamente , Obesidade/epidemiologia , Organofosfatos , Praguicidas/toxicidade , Gravidez
8.
Artigo em Inglês | MEDLINE | ID: mdl-34068255

RESUMO

Autism spectrum disorder (ASD) is a complex set of neurodevelopmental pathologies characterized by impoverished social and communicative abilities and stereotyped behaviors. Although its genetic basis is unquestionable, the involvement of environmental factors such as exposure to pesticides has also been proposed. Despite the systematic analyses of this relationship in humans, there are no specific reviews including both human and preclinical models. The present systematic review summarizes, analyzes, and discusses recent advances in preclinical and epidemiological studies. We included 45 human and 16 preclinical studies. These studies focused on Organophosphates (OP), Organochlorine (OC), Pyrethroid (PT), Neonicotinoid (NN), Carbamate (CM), and mixed exposures. Preclinical studies, where the OP Chlorpyrifos (CPF) compound is the one most studied, pointed to an association between gestational exposure and increased ASD-like behaviors, although the data are inconclusive with regard to other ages or pesticides. Studies in humans focused on prenatal exposure to OP and OC agents, and report cognitive and behavioral alterations related to ASD symptomatology. The results of both suggest that gestational exposure to certain OP agents could be linked to the clinical signs of ASD. Future experimental studies should focus on extending the analysis of ASD-like behaviors in preclinical models and include exposure patterns similar to those observed in human studies.


Assuntos
Transtorno do Espectro Autista , Clorpirifos , Praguicidas , Efeitos Tardios da Exposição Pré-Natal , Piretrinas , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/epidemiologia , Feminino , Humanos , Praguicidas/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
9.
Metabolites ; 11(5)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063209

RESUMO

Phytoestrogens are considered beneficial for health, but some studies have shown that they may cause adverse effects. This study investigated the effects of genistein administration during the second week of life on energy metabolism and on the circuits regulating food intake. Two different genistein doses, 10 or 50 µg/g, were administered to male and female rats from postnatal day (P) 6 to P13. Physiological parameters, such as body weight and caloric intake, were then analyzed at P90. Moreover, proopiomelanocortin (POMC) expression in the arcuate nucleus (Arc) and orexin expression in the dorsomedial hypothalamus (DMH), perifornical area (PF) and lateral hypothalamus (LH) were studied. Our results showed a delay in the emergence of sex differences in the body weight in the groups with higher genistein doses. Furthermore, a significant decrease in the number of POMC-immunoreactive (POMC-ir) cells in the Arc in the two groups of females treated with genistein was observed. In contrast, no alteration in orexin expression was detected in any of the structures analyzed in either males or females. In conclusion, genistein can modulate estradiol's programming actions on the hypothalamic feeding circuits differentially in male and female rats during development.

10.
Neuroendocrinology ; 111(7): 660-677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32570260

RESUMO

INTRODUCTION: The membrane-associated G protein-coupled estrogen receptor 1 (GPER) mediates the regulation by estradiol of arginine-vasopressin immunoreactivity in the supraoptic and paraventricular hypothalamic nuclei of female rats and is involved in the estrogenic control of hypothalamic regulated functions, such as food intake, sexual receptivity, and lordosis behavior. OBJECTIVE: To assess GPER distribution in the rat hypothalamus. METHODS: GPER immunoreactivity was assessed in different anatomical subdivisions of five selected hypothalamic regions of young adult male and cycling female rats: the arcuate nucleus, the lateral hypothalamus, the paraventricular nucleus, the supraoptic nucleus, and the ventromedial hypothalamic nucleus. GPER immunoreactivity was colocalized with NeuN as a marker of mature neurons, GFAP as a marker of astrocytes, and CC1 as a marker of mature oligodendrocytes. RESULTS: GPER immunoreactivity was detected in hypothalamic neurons, astrocytes, and oligodendrocytes. Sex and regional differences and changes during the estrous cycle were detected in the total number of GPER-immunoreactive cells and in the proportion of neurons, astrocytes, and oligodendrocytes that were GPER-immunoreactive. CONCLUSIONS: These findings suggest that estrogenic regulation of hypothalamic function through GPER may be different in males and females and may fluctuate during the estrous cycle in females.


Assuntos
Astrócitos/metabolismo , Ciclo Estral/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Caracteres Sexuais , Animais , Feminino , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar
11.
Artigo em Inglês | MEDLINE | ID: mdl-32849310

RESUMO

G protein-coupled estrogen receptor (GPER) in the amygdala and the dorsal hippocampus mediates actions of estradiol on anxiety, social recognition and spatial memory. In addition, GPER participates in the estrogenic regulation of synaptic function in the amygdala and in the process of adult neurogenesis in the dentate gyrus. While the distribution of the canonical estrogen receptors α and ß in the amygdala and dorsal hippocampus are well characterized, little is known about the regional distribution of GPER in these brain regions and whether this distribution is affected by sex or the stages of the estrous cycle. In this study we performed a morphometric analysis of GPER immunoreactivity in the posterodorsal medial, anteroventral medial, basolateral, basomedial and central subdivisions of the amygdala and in all the histological layers of CA1 and the dentate gyrus of the dorsal hippocampal formation. The number of GPER immunoreactive cells was estimated in these different structures. GPER immunoreactivity was detected in all the assessed subdivisions of the amygdaloid nucleus and dorsal hippocampal formation. The number of GPER immunoreactive cells was higher in males than in estrus females in the central (P = 0.001) and the posterodorsal medial amygdala (P < 0.05); higher in males than in diestrus females in the strata orients (P < 0.01) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer of the dentate gyrus (P < 0.01); higher in diestrus females than in males in the basolateral amygdala (P < 0.05); higher in diestrus females than in estrus females in the central (P < 0.01), posterodorsal medial (P < 0.01) and basolateral amygdala (P < 0.01) and higher in estrus females than in diestrus females in the strata oriens (P < 0.05) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer (P < 0.05) and the hilus of the dentate gyrus (P < 0.05). The findings suggest that estrogenic regulation of the amygdala and hippocampus through GPER may be different in males and in females and may fluctuate during the estrous cycle.


Assuntos
Tonsila do Cerebelo/metabolismo , Estro/fisiologia , Hipocampo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Tonsila do Cerebelo/imunologia , Animais , Feminino , Hipocampo/imunologia , Masculino , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/imunologia , Fatores Sexuais
12.
Neuroscience ; 426: 59-68, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805254

RESUMO

Estradiol not only participates in the regulation of energy metabolism in adulthood, but also during the first stages of life as it modulates the alterations induced by under- and over-nutrition. The objectives of the present study were to determine: 1) If estradiol is involved in the normal programming of energy metabolism in rats; 2) If there is a specific window of time for this programming and 3) If males and females are differentially vulnerable to the action of this hormone. Estrogen receptors (ER) α, ERß and GPER were blocked by their specific antagonists MPP, PHTPP and G15, respectively, from postnatal day (P) 1 (the day of birth) to P5 or from P5 to P13. Physiological parameters such as body weight, fat depots and caloric intake were then analysed at P90. Hypothalamic AgRP, POMC, MC4R, ERα, ERß and GPER mRNA levels and plasma levels of estradiol, were also studied. We found that blocking ER receptors from P5 to P13 significantly decreases long-term body weight in males and hypothalamic POMC mRNA levels in females. The blocking of ERs from P1 to P5 only affected plasma estradiol levels in females. The present results indicate programming actions of estradiol from P5 to P13 on body weight in male and POMC expression in female rats and emphasize the importance of including both sexes in metabolic studies. It is necessary to unravel the mechanisms that underlie the actions of estradiol on food intake, both during development and in adulthood, and to determine how this programming differentially takes place in males and females.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Receptor beta de Estrogênio/antagonistas & inibidores , Receptores de Estradiol/antagonistas & inibidores , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Hipotálamo/metabolismo , Masculino , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismo
13.
Brain Res ; 1712: 93-100, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30731078

RESUMO

The ovarian hormone 17ß-estradiol is known to regulate the release, expression and immunoreactivity of arginine-vasopressin (AVP) in the supraoptic and paraventricular hypothalamic nuclei of rodents. Previous studies have shown that estrogen receptor α is involved in the effects of chronic estradiol administration on arginine-vasopressin immunoreactivity in the female rat hypothalamus. In this study we have examined the effect of an acute administration of estradiol or specific agonists for estrogen receptors α, ß and G protein-coupled estrogen receptor 1 on the immunoreactivity of arginine-vasopressin in the hypothalamus of adult ovariectomized female rats. Acute estradiol administration resulted in a significant decrease in the number of arginine-vasopressin immunoreactive neurons in the supraoptic and paraventricular nuclei after 24 h. The effects of the specific estrogen receptors agonists suggest that the action of estradiol on arginine-vasopressin immunoreactivity is mediated in the supraoptic nucleus by G protein-coupled estrogen receptor 1 and in the paraventricular nucleus by both estrogen receptor ß and G protein-coupled estrogen receptor 1. Thus, in contrast to previous studies on the effect of chronic estrogenic treatments, the present findings suggest that estrogen receptor ß and G protein-coupled estrogen receptor 1 mediate the acute effects of estradiol on arginine-vasopressin immunoreactivity in the hypothalamus of ovariectomized rats.


Assuntos
Arginina Vasopressina/metabolismo , Receptor beta de Estrogênio/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Núcleo Supraóptico/metabolismo , Animais , Arginina Vasopressina/imunologia , Estradiol/farmacologia , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/imunologia , Feminino , Hipotálamo/imunologia , Hipotálamo/metabolismo , Neurônios/imunologia , Neurônios/metabolismo , Ovariectomia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/imunologia , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/imunologia , Núcleo Supraóptico/efeitos dos fármacos , Núcleo Supraóptico/imunologia
14.
Nutr Neurosci ; 22(1): 29-39, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28696162

RESUMO

BACKGROUND: Overnutrition due to a high-fat diet (HFD) can increase the vulnerability of the metabolic system to maladjustments. Estradiol has an inhibitory role on food intake and this hormone has demonstrated to be a crucial organizer during brain development. OBJECTIVE: Our aim was to determine whether increased levels of estradiol in the early postnatal period modulate the alterations in metabolism and brain metabolic circuits produced by overnutrition. METHODS: Twenty-four male and 24 female Wistar rats were submitted to a HFD (34.9% fat) or a control diet (5% fat) from gestational day 6. From postnatal (P) 6 to P13, both control and HFD groups were administered a s.c. injection of vehicle or estradiol benzoate (0.4 mg/kg), resulting in eight experimental groups (n = 6 in each group). Body weight, food intake and subcutaneous, visceral, and brown fat pads were measured. Agouti-related peptide, neuropeptide Y, orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay and plasma estradiol levels were measured by ELISA. RESULTS: Males fed a HFD showed an increase in body weight and the amount of visceral and subcutaneous fat, which was coincident with an increase in the number of kilocalories ingested. Neonatal estradiol treatment restored the body weight and subcutaneous fat of HFD males to control levels. Hypothalamic POMC mRNA levels in HFD females were increased with respect to control females. This increase was reverted with estradiol treatment during development. DISCUSSION: HFD and estradiol treatment have different effects on males and females. Overnutrition affects physiological parameters, such as body weight, visceral, and subcutaneous fat content, in males, while females present alterations in hypothalamic POMC mRNA levels. Hence, the increase in estradiol levels during a period that is critical for the programing of the feeding system can modulate some of the alterations produced by the continuous intake of high-fat content food.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Estradiol/análogos & derivados , Hipotálamo/patologia , Hipernutrição/fisiopatologia , Adiposidade , Animais , Peso Corporal , Dieta , Modelos Animais de Doenças , Estradiol/sangue , Estradiol/farmacologia , Feminino , Hipotálamo/efeitos dos fármacos , Masculino , Neuropeptídeo Y/metabolismo , Orexinas/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Wistar , Fatores Sexuais
15.
Psicothema (Oviedo) ; 30(1): 5-7, feb. 2018.
Artigo em Inglês | IBECS | ID: ibc-172591

RESUMO

Background: The concept of the exposome has emerged as a new strategy for studying all environmental exposures throughout an individual’s life and their impact on human health. Nowadays, electronic devices are available to collect data about an individual’s geolocation, biological function, or exposure biomarkers. The appearance of "omic" sciences and advances in bioinformatics have allowed massive data-gathering and analysis from various scientific fields. Objective: to propose the term Psychoexposome in line with the concept of the exposome from the field of environmental sciences. Method: a literature review of psychological terms associated with the exposome concept was carried out and the rationale and benefits of a psychoexposme approach for psychological sciences is discussed. Results: the terms psychology, psychiatry and neurological diseases are scarce in the exposome approach. A long tradition in psychology of performing epidemiological studies and in the study of multifactorial influences traits places psychologists at an advantageous starting point for conducting psychoexposome studies. Conclusion: psychology may take advantage from both exposome and omic sciences to create an integrated psychoexposome approach that may help in deciphering the etiology of psychological disorders and improving people's mental health (AU)


Antecedentes: el concepto de exposoma surgió como una estrategia para impulsar el estudio exhaustivo de las exposiciones ambientales a lo largo de la vida del individuo y su impacto en la salud. El desarrollo de dispositivos electrónicos para obtener datos de geolocalización, biológicos o biomarcadores de exposición y los avances en las ciencias "ómicas" y en bioinformática permiten la recopilación y el análisis masivo de datos muy diversos. Objetivo: proponer el término psicoexposoma en línea con el concepto de exposoma generado desde las ciencias ambientales. Método: se llevó a cabo una revisión de la literatura para buscar la inclusión de términos psicológicos asociados al concepto de exposoma. Se discute la justificación de un enfoque de psicoexposición para las ciencias psicológicas. Resultados: los términos psicología, psiquiatría o enfermedades neurológicas son escasos en el enfoque del exposoma. La experiencia en el control de variables ambientales sitúa al psicólogo en un punto de partida ventajoso para realizar estudios de psicoexposoma. Conclusión: la psicología puede aprovechar tanto las ciencias de la exposición como las ciencias "ómicas" para crear un enfoque integrado de psicoexposición que pueda ayudar a descifrar la etiología de los trastornos psicológicos y a promover la salud mental del individuo (AU)


Assuntos
Humanos , Saúde Holística/tendências , Saúde Mental/tendências , Processos Mentais/fisiologia , Avaliação em Saúde/métodos , Perfil de Impacto da Doença
16.
Psicothema ; 30(1): 5-7, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29363463

RESUMO

BACKGROUND: The concept of the exposome has emerged as a new strategy for studying all environmental exposures throughout an individual’s life and their impact on human health. Nowadays, electronic devices are available to collect data about an individual’s geolocation, biological function, or exposure biomarkers. The appearance of “omic” sciences and advances in bioinformatics have allowed massive data-gathering and analysis from various scientific fields. OBJECTIVE: to propose the term Psychoexposome in line with the concept of the exposome from the field of environmental sciences. METHOD: a literature review of psychological terms associated with the exposome concept was carried out and the rationale and benefits of a psychoexposme approach for psychological sciences is discussed. RESULTS: the terms psychology, psychiatry and neurological diseases are scarce in the exposome approach. A long tradition in psychology of performing epidemiological studies and in the study of multifactorial influences traits places psychologists at an advantageous starting point for conducting psychoexposome studies. CONCLUSION: psychology may take advantage from both exposome and omic sciences to create an integrated psychoexposome approach that may help in deciphering the etiology of psychological disorders and improving people’s mental health.


Assuntos
Exposição Ambiental , Saúde Holística , Acontecimentos que Mudam a Vida , Sistema Nervoso/crescimento & desenvolvimento , Meio Social , Humanos , Psicologia , Psiconeuroimunologia
17.
Front Neuroendocrinol ; 48: 13-22, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754628

RESUMO

Many studies have shown the importance of an adequate nutritional environment during development to optimally establish the neurohormonal circuits that regulate feeding behavior. Under- or over-nutrition during early stages of life can lead to alterations in the physiology and brain networks that control food intake, resulting in a greater vulnerability to suffer maladjustments in energy metabolism in adulthood. These alterations produced by under- or over-nourishment during development differ between males and females, as does the modulatory action that estradiol exerts on the alterations produced by malnutrition. Estradiol regulates metabolism and brain metabolic circuits through the same transcription factor pathway, STAT3, that leptin and ghrelin use to program feeding circuits. Although more research is needed to disentangle the actual role of estradiol during development on the programming of feeding circuits, a synergistic role together with leptin and/or ghrelin might be hypothesized.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Estradiol/metabolismo , Desnutrição/metabolismo , Caracteres Sexuais , Animais , Feminino , Masculino , Ratos
18.
Neuroendocrinology ; 104(1): 94-104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26954778

RESUMO

Nitric oxide is produced in the brain by the neuronal nitric oxide synthase (nNOS) and carries out a wide range of functions by acting as a neurotransmitter-like molecule. Gonadal hormones are involved in the regulation of the brain nitrergic system. We have previously demonstrated that estradiol, via classical estrogen receptors (ERs), regulates NOS activity in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus, acting through both ERα and ERß. Magnocellular and parvocellular neurons in the SON and PVN also express the G protein-coupled ER (GPER). In this study, we have assessed whether GPER is also involved in the regulation of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase in the SON and PVN. Adult female ovariectomized rats were treated with G1, a selective GPER agonist, or with G1 in combination with G15, a selective GPER antagonist. G1 treatment decreased NADPH-diaphorase expression in the SON and in all PVN subnuclei. The treatment with G1 + G15 effectively rescued the G1-dependent decrease in NADPH-diaphorase expression in both brain regions. In addition, the activation of extracellular signal-regulated kinase (ERK) 1/2, one of the kinases involved in the GPER-dependent intracellular signaling pathway and in NOS phosphorylation, was assessed in the same brain nuclei. Treatment with G1 significantly decreased the number of p-ERK 1/2-positive cells in the SON and PVN, while the treatment with G1 + G15 significantly recovered its number to control values. These findings suggest that the activation of GPER in the SON and PVN inhibits the phosphorylation of ERK 1/2, which induces a decrease in NADPH-diaphorase expression.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , NADPH Desidrogenase/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Núcleo Supraóptico/efeitos dos fármacos , Animais , Benzodioxóis/farmacologia , Contagem de Células , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ovariectomia , Ratos , Ratos Wistar , Núcleo Supraóptico/metabolismo
19.
Behav Brain Res ; 196(2): 261-7, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18929601

RESUMO

Male rats, under certain experimental conditions, may show lordosis, the typical expression of female sexual receptivity. This work studies the sexual morphological pattern of facilitatory and inhibitory structures that control lordosis. Three groups of males were neonatally subjected to a gradient of androgen exposure (castrated plus injected oil (GxM+oil); castrated plus androstenedione treated (GxM+AND); and sham operated [CM]); a group of control females (CF) was also added. Lordotic response after these different hormonal and neonatal surgical treatments, as well as the volume or number of neurons in facilitatory (ventromedial nucleus of the hypothalamus [VMN]) and inhibitory (the intermediate region of the lateral septum [LSi] and accessory olfactory bulb [AOB]) nuclei involved in lordosis was studied in adults. The inhibition of lordosis in the males seems to be associated to the neonatal presence of testosterone and the consequent masculinization of the VMN, VMNvl, LSi and AOB. It is suggested that one of the functions of the sex differences consistently seen in these structures might be to inhibit the lordosis response in the male.


Assuntos
Diferenciação Sexual/fisiologia , Comportamento Sexual Animal/fisiologia , Androstenodiona/farmacologia , Animais , Contagem de Células , Interpretação Estatística de Dados , Feminino , Feminização , Masculino , Neurônios/fisiologia , Bulbo Olfatório/anatomia & histologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Orquiectomia , Ratos , Septo do Cérebro/anatomia & histologia , Septo do Cérebro/citologia , Septo do Cérebro/fisiologia , Núcleo Hipotalâmico Ventromedial/anatomia & histologia , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/fisiologia
20.
Brain Res ; 1150: 83-93, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17425950

RESUMO

The anteroventral subdivision of the medial amygdala (MeAV) is one of the vomeronasal structures involved in the control of hormonally dependent behaviors such as sexual and agonistic behaviors in rats. The present study investigates some anatomical and neurochemical parameters of this nucleus (volume, number of neurons, number of glial elements, and of NADPH-diaphorase-positive neurons) in females in two estrous cycle phases (diestrous and estrous) and in males. We also investigate the possible existence of adult neurogenesis in this nucleus in the females. Results showed that volume and estimated number of Nissl-stained neurons in the MeAV vary with the estrous cycle phase: estrous females have greater values than diestrous females. As a consequence of these variations, there is a transient sex difference between males and diestrous females. Two subpopulations of NADPH-diaphorase-positive neurons were detected: intensely stained and medium stained. The intensely stained neurons were more numerous in the estrous than the diestrous females. Neither BrdU nor GFAP inmunostaining revealed significant differences between the two groups, suggesting that adult cell generation, i.e., increases in the number of glial elements, has no significant role in the changes detected in the number of Nissl-stained sections. In conclusion, the MeAV shows functional diergism, due to plastic changes in the female rat brain probably linked to the increase of estradiol during estrous. Finally, these changes are probably functionally related to changes in the behaviors that are controlled through this nucleus.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Química Encefálica/fisiologia , Ciclo Estral , Neurônios/metabolismo , Animais , Bromodesoxiuridina/metabolismo , Contagem de Células , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , NADPH Desidrogenase/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos , Ratos Wistar , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...