Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798460

RESUMO

T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. mTregs are both necessary and sufficient for suppressing mechanical pain sensitivity in female but not male mice. Notably, the mTreg modulation of pain thresholds depends on sex-hormones and expansion of enkephalinergic mTregs during gestation imparts a remarkable pregnancy-induced analgesia in a pre-existing, chronic, unremitting neuropathic pain model. These results uncover a fundamental sex-specific, pregnancy-pronounced, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology and maternal health.

2.
Biol Psychiatry ; 92(12): 952-963, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35977861

RESUMO

BACKGROUND: Selective serotonin reuptake inhibitors such as fluoxetine have a limited treatment efficacy. The mechanism by which some patients respond to fluoxetine while others do not remains poorly understood, limiting treatment effectiveness. We have found the opioid system to be involved in the responsiveness to fluoxetine treatment in a mouse model for anxiety- and depressive-like behavior. METHODS: We analyzed gene expression changes in the dentate gyrus of mice chronically treated with corticosterone and fluoxetine. After identifying a subset of genes of interest, we studied their expression patterns in relation to treatment responsiveness. We further characterized their expression through in situ hybridization and the analysis of a single-cell RNA sequencing dataset. Finally, we behaviorally tested mu and delta opioid receptor knockout mice in the novelty suppressed feeding test and the forced swim test after chronic corticosterone and fluoxetine treatment. RESULTS: Chronic fluoxetine treatment upregulates proenkephalin expression in the dentate gyrus, and this upregulation is associated with treatment responsiveness. The expression of several of the most significantly upregulated genes, including proenkephalin, is localized to an anatomically and transcriptionally specialized subgroup of mature granule cells in the dentate gyrus. We have also found that the delta opioid receptor contributes to some, but not all, of the behavioral effects of fluoxetine. CONCLUSIONS: These data indicate that the opioid system is involved in the antidepressant effects of fluoxetine, and this effect may be mediated through the upregulation of proenkephalin in a subpopulation of mature granule cells.


Assuntos
Analgésicos Opioides , Fluoxetina , Camundongos , Animais , Fluoxetina/farmacologia , Analgésicos Opioides/farmacologia , Corticosterona , Receptores Opioides delta/genética , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Camundongos Knockout
3.
Genes Brain Behav ; 21(7): e12827, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878875

RESUMO

ProSAAS is a neuroendocrine protein that is cleaved by neuropeptide-processing enzymes into more than a dozen products including the bigLEN and PEN peptides, which bind and activate the receptors GPR171 and GPR83, respectively. Previous studies have suggested that proSAAS-derived peptides are involved in physiological functions that include body weight regulation, circadian rhythms and anxiety-like behavior. In the present study, we find that proSAAS knockout mice display robust anxiety-like behaviors in the open field, light-dark emergence and elevated zero maze tests. These mutant mice also show a reduction in cued fear and an impairment in fear-potentiated startle, indicating an important role for proSAAS-derived peptides in emotional behaviors. ProSAAS knockout mice exhibit reduced water consumption and urine production relative to wild-type controls. No differences in food consumption and overall energy expenditure were observed between the genotypes. However, the respiratory exchange ratio was elevated in the mutants during the light portion of the light-dark cycle, indicating decreased fat metabolism during this period. While proSAAS knockout mice show normal circadian patterns of activity, even upon long-term exposure to constant darkness, they were unable to shift their circadian clock upon exposure to a light pulse. Taken together, these results show that proSAAS-derived peptides modulate a wide range of behaviors including emotion, metabolism and the regulation of the circadian clock.


Assuntos
Neuropeptídeos/metabolismo , Animais , Ansiedade/genética , Ritmo Circadiano/genética , Comportamento Consumatório , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos , Receptores Acoplados a Proteínas G
4.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328429

RESUMO

The mu opioid receptor has a distinct place in the opioid receptor family, since it mediates the actions of most opioids used clinically (e.g., morphine and fentanyl), as well as drugs of abuse (e.g., heroin). The single-copy mu opioid receptor gene, OPRM1, goes through extensive alternative pre-mRNA splicing to generate numerous splice variants that are conserved from rodents to humans. These OPRM1 splice variants can be classified into three structurally distinct types: (1) full-length 7 transmembrane (TM) carboxyl (C)-terminal variants; (2) truncated 6TM variants; and (3) single TM variants. Distinct pharmacological functions of these splice variants have been demonstrated by both in vitro and in vivo studies, particularly by using several unique gene-targeted mouse models. These studies provide new insights into our understanding of the complex actions of mu opioids with regard to OPRM1 alternative splicing. This review provides an overview of the studies that used these gene-targeted mouse models for exploring the functional importance of Oprm1 splice variants.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Processamento Alternativo , Analgésicos Opioides/farmacologia , Animais , Camundongos , Modelos Animais , Morfina/farmacologia , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo
5.
Neuropsychopharmacology ; 47(7): 1387-1397, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34593976

RESUMO

Tianeptine is an atypical antidepressant used in Europe to treat patients who respond poorly to selective serotonin reuptake inhibitors (SSRIs). The recent discovery that tianeptine is a mu opioid receptor (MOR) agonist has provided a potential avenue for expanding our understanding of antidepressant treatment beyond the monoamine hypothesis. Thus, our studies aim to understand the neural circuits underlying tianeptine's antidepressant effects. We show that tianeptine induces rapid antidepressant-like effects in mice after as little as one week of treatment. Critically, we also demonstrate that tianeptine's mechanism of action is distinct from fluoxetine in two important aspects: (1) tianeptine requires MORs for its chronic antidepressant-like effect, while fluoxetine does not, and (2) unlike fluoxetine, tianeptine does not promote hippocampal neurogenesis. Using cell-type specific MOR knockouts we further show that MOR expression on GABAergic cells-specifically somatostatin-positive neurons-is necessary for the acute and chronic antidepressant-like responses to tianeptine. Using central infusion of tianeptine, we also implicate the ventral hippocampus as a potential site of antidepressant action. Moreover, we show a dissociation between the antidepressant-like phenotype and other opioid-like phenotypes resulting from acute tianeptine administration such as analgesia, conditioned place preference, and hyperlocomotion. Taken together, these results suggest a novel entry point for understanding what circuit dysregulations may occur in depression, as well as possible targets for the development of new classes of antidepressant drugs.


Assuntos
Receptores Opioides mu , Tiazepinas , Analgésicos Opioides/farmacologia , Animais , Antidepressivos/farmacologia , Fluoxetina/farmacologia , Hipocampo , Humanos , Interneurônios , Camundongos , Receptores Opioides mu/agonistas , Tiazepinas/farmacologia
6.
J Med Chem ; 64(22): 16553-16572, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34783240

RESUMO

The leaves of Mitragyna speciosa (kratom), a plant native to Southeast Asia, are increasingly used as a pain reliever and for attenuation of opioid withdrawal symptoms. Using the tools of natural products chemistry, chemical synthesis, and pharmacology, we provide a detailed in vitro and in vivo pharmacological characterization of the alkaloids in kratom. We report that metabolism of kratom's major alkaloid, mitragynine, in mice leads to formation of (a) a potent mu opioid receptor agonist antinociceptive agent, 7-hydroxymitragynine, through a CYP3A-mediated pathway, which exhibits reinforcing properties, inhibition of gastrointestinal (GI) transit and reduced hyperlocomotion, (b) a multifunctional mu agonist/delta-kappa antagonist, mitragynine pseudoindoxyl, through a CYP3A-mediated skeletal rearrangement, displaying reduced hyperlocomotion, inhibition of GI transit and reinforcing properties, and (c) a potentially toxic metabolite, 3-dehydromitragynine, through a non-CYP oxidation pathway. Our results indicate that the oxidative metabolism of the mitragynine template beyond 7-hydroxymitragynine may have implications in its overall pharmacology in vivo.


Assuntos
Alcaloides de Triptamina e Secologanina/farmacologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Receptores Opioides mu
7.
Nat Commun ; 12(1): 3858, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158473

RESUMO

Mitragynine (MG) is the most abundant alkaloid component of the psychoactive plant material "kratom", which according to numerous anecdotal reports shows efficacy in self-medication for pain syndromes, depression, anxiety, and substance use disorders. We have developed a synthetic method for selective functionalization of the unexplored C11 position of the MG scaffold (C6 position in indole numbering) via the use of an indole-ethylene glycol adduct and subsequent iridium-catalyzed borylation. Through this work we discover that C11 represents a key locant for fine-tuning opioid receptor signaling efficacy. 7-Hydroxymitragynine (7OH), the parent compound with low efficacy on par with buprenorphine, is transformed to an even lower efficacy agonist by introducing a fluorine substituent in this position (11-F-7OH), as demonstrated in vitro at both mouse and human mu opioid receptors (mMOR/hMOR) and in vivo in mouse analgesia tests. Low efficacy opioid agonists are of high interest as candidates for generating safer opioid medications with mitigated adverse effects.


Assuntos
Mitragyna/química , Extratos Vegetais/farmacologia , Receptores Opioides mu/agonistas , Alcaloides de Triptamina e Secologanina/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Animais , Etilenoglicol/química , Humanos , Camundongos Knockout , Modelos Químicos , Estrutura Molecular , Extratos Vegetais/química , Ligação Proteica , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Alcaloides de Triptamina e Secologanina/química
8.
Cell Mol Neurobiol ; 41(5): 1103-1118, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33389463

RESUMO

Activation of µ, δ, and κ opioid receptors by endogenous opioid peptides leads to the regulation of many emotional and physiological responses. The three major endogenous opioid peptides, ß-endorphin, enkephalins, and dynorphins result from the processing of three main precursors: proopiomelanocortin, proenkephalin, and prodynorphin. Using a knockout approach, we sought to determine whether the absence of endogenous opioid peptides would affect the expression or activity of opioid receptors in mice lacking either proenkephalin, ß-endorphin, or both. Since gene knockout can lead to changes in the levels of peptides generated from related precursors by compensatory mechanisms, we directly measured the levels of Leu-enkephalin and dynorphin-derived peptides in the brain of animals lacking proenkephalin, ß-endorphin, or both. We find that whereas the levels of dynorphin-derived peptides were relatively unaltered, the levels of Leu-enkephalin were substantially decreased compared to wild-type mice suggesting that preproenkephalin is the major source of Leu-enkephalin. This data also suggests that the lack of ß-endorphin and/or proenkephalin does not lead to a compensatory change in prodynorphin processing. Next, we examined the effect of loss of the endogenous peptides on the regulation of opioid receptor levels and activity in specific regions of the brain. We also compared the receptor levels and activity in males and females and show that the lack of ß-endorphin and/or proenkephalin leads to differential modulation of the three opioid receptors in a region- and gender-specific manner. These results suggest that endogenous opioid peptides are important modulators of the expression and activity of opioid receptors in the brain.


Assuntos
Analgésicos Opioides/metabolismo , Encéfalo/metabolismo , Peptídeos Opioides/metabolismo , Receptores Opioides/agonistas , Receptores Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos Opioides/farmacologia
9.
Biochemistry ; 60(18): 1413-1419, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32930576

RESUMO

This report describes the unique pharmacological profile of FBNTI, a potent DOR antagonist that acts as a MOR agonist via an allosteric mechanism. Binding of FBNTI to opioid receptors expressed in HEK 293 cells revealed a 190-fold greater affinity for DOR (Ki = 0.84 nM) over MOR (Ki = 160 nM). In mice, intrathecal FBNTI produced potent antinociception (ED50 = 46.9 pmol/mouse), which was antagonized by selective MOR antagonists (CTOP, ß-FNA). Autoantagonism of the MOR agonism by FBNTI was observed above the ED75 dose, suggesting antagonism of activated MOR. That FBNTI is devoid of agonism in DOR knockout mice is consistent with allosteric activation of the MOR protomer via FBNTI bound to within a MOR-DOR heteromer. This proposed mechanism is supported by calcium mobilization assays, which indicate that FBNTI selectively activates the MOR-DOR heteromer and functionally antagonizes the MOR protomer at >ED75. The unprecedented mode of MOR activation by FBNTI may be responsible for the lack of tolerance after intrathecal (i.t.) administration. FBNTI was highly effective upon topical administration to the ipsolateral hind paw in the Hargreaves assay (EC50 = 0.17 ± 0.08 µM) and without significant contralateral activity, suggesting a lack of systemic exposure.


Assuntos
Analgésicos Opioides/farmacologia , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/agonistas , Analgésicos Opioides/química , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Estrutura Molecular , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo
10.
J Med Chem ; 63(22): 13618-13637, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170687

RESUMO

In this work, we studied a series of carfentanyl amide-based opioid derivatives targeting the mu opioid receptor (µOR) and the delta opioid receptor (δOR) heteromer as a credible novel target in pain management therapy. We identified a lead compound named MP135 that exhibits high G-protein activity at µ-δ heteromers compared to the homomeric δOR or µOR and low ß-arrestin2 recruitment activity at all three. Furthermore, MP135 exhibits distinct signaling profile, as compared to the previously identified agonist targeting µ-δ heteromers, CYM51010. Pharmacological characterization of MP135 supports the utility of this compound as a molecule that could be developed as an antinociceptive agent similar to morphine in rodents. In vivo characterization reveals that MP135 maintains untoward side effects such as respiratory depression and reward behavior; together, these results suggest that optimization of MP135 is necessary for the development of therapeutics that suppress the classical side effects associated with conventional clinical opioids.


Assuntos
Fentanila/análogos & derivados , Receptores Opioides delta/agonistas , Analgésicos/síntese química , Analgésicos/farmacologia , Animais , Linhagem Celular , Fentanila/síntese química , Fentanila/farmacologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Long-Evans , Receptores Opioides delta/metabolismo
11.
Diabetologia ; 63(5): 1090, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32172312

RESUMO

Unfortunately, the human islet checklist was omitted from the electronic supplementary material (ESM) linked to this paper.

12.
Diabetologia ; 63(3): 561-576, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31984442

RESUMO

AIMS/HYPOTHESIS: Peptide hormones are first synthesised as larger, inactive precursors that are converted to their active forms by endopeptidase cleavage and post-translational modifications, such as amidation. Recent, large-scale genome-wide studies have suggested that two coding variants of the amidating enzyme, peptidylglycine α-amidating monooxygenase (PAM), are associated with impaired insulin secretion and increased type 2 diabetes risk. We aimed to elucidate the role of PAM in modulating beta cell peptide amidation, beta cell function and the development of diabetes. METHODS: PAM transcript and protein levels were analysed in mouse islets following induction of endoplasmic reticulum (ER) or cytokine stress, and PAM expression patterns were examined in human islets. To study whether haploinsufficiency of PAM accelerates the development of diabetes, Pam+/- and Pam+/+ mice were fed a low-fat diet (LFD) or high-fat diet (HFD) and glucose homeostasis was assessed. Since aggregates of the PAM substrate human islet amyloid polypeptide (hIAPP) lead to islet inflammation and beta cell failure, we also investigated whether PAM haploinsufficiency accelerated hIAPP-induced diabetes and islet amyloid formation in Pam+/- and Pam+/+ mice with beta cell expression of hIAPP. RESULTS: Immunostaining revealed high expression of PAM in alpha, beta and delta cells in human pancreatic islets. Pam mRNA and PAM protein expression were reduced in mouse islets following administration of an HFD, and in isolated islets following induction of ER stress with thapsigargin, or cytokine stress with IL-1ß, IFN-γ and TFN-α. Despite Pam+/- only having 50% PAM expression and enzyme activity as compared with Pam+/+ mice, glucose tolerance and body mass composition were comparable in the two models. After 24 weeks of HFD, both Pam+/- and Pam+/+ mice had insulin resistance and impaired glucose tolerance, but no differences in glucose tolerance, insulin sensitivity or plasma insulin levels were observed in PAM haploinsufficient mice. Islet amyloid formation and beta cell function were also similar in Pam+/- and Pam+/+ mice with beta cell expression of hIAPP. CONCLUSIONS/INTERPRETATION: Haploinsufficiency of PAM in mice does not accelerate the development of diet-induced obesity or hIAPP transgene-induced diabetes.


Assuntos
Amidina-Liases/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Oxigenases de Função Mista/genética , Amidina-Liases/fisiologia , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Progressão da Doença , Epistasia Genética/fisiologia , Feminino , Predisposição Genética para Doença , Haploinsuficiência , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxigenases de Função Mista/fisiologia , Ratos , Ratos Endogâmicos Lew , Fatores de Risco
13.
Alcohol Clin Exp Res ; 43(10): 2167-2178, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31386211

RESUMO

BACKGROUND: The nociceptin/orphanin FQ opioid peptide (NOP) receptor and its endogenous ligand N/OFQ have been implicated in the regulation of drug and alcohol use disorders (AUD). In particular, evidence demonstrated that NOP receptor activation blocks reinforcing and motivating effects of alcohol across a range of behavioral measures, including alcohol intake, conditioned place preference, and vulnerability to relapse. METHODS: Here, we show the effects of pharmacological activation and inhibition of NOP receptors on binge-like alcohol consumption, as measured by the "drinking in the dark" (DID) model in C57BL/6J mice. RESULTS: We found that 2 potent and selective NOP agonists AT-202 (0, 0.3, 1, 3 mg/kg) and AT-312 (0, 0.3, 1 mg/kg) did not affect binge alcohol drinking at doses that do not affect locomotor activity. AT-202 also failed to alter DID behavior when administered to mice previously exposed to chronic alcohol treatment with an alcohol-containing liquid diet. Conversely, treatment with either the high affinity NOP receptor antagonist SB-612111 (0, 3, 10, 30 mg/kg) or the selective antagonist LY2817412 (0, 3, 10, 30 mg/kg) decreased binge drinking. SB-612111 was effective at all doses examined, and LY2817412 was effective at 30 mg/kg. Consistently, NOP receptor knockout mice consumed less alcohol compared to wild type. SB-612111 reduced DID and increased sucrose consumption at doses that do not appear to affect locomotor activity. However, the high dose of SB-612111 (30 mg/kg) reduced alcohol intake but failed to inhibit preference in a 2-bottle choice DID model that can assess moderate alcohol intake. CONCLUSIONS: The present results suggest that NOP receptor inhibition rather than activation may represent a valuable approach for treatment of AUD characterized by excessive alcohol consumption such as binge drinking.


Assuntos
Dissuasores de Álcool/uso terapêutico , Consumo de Bebidas Alcoólicas/prevenção & controle , Antagonistas de Entorpecentes/uso terapêutico , Receptores Opioides/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/psicologia , Animais , Consumo Excessivo de Bebidas Alcoólicas/tratamento farmacológico , Consumo Excessivo de Bebidas Alcoólicas/genética , Consumo Excessivo de Bebidas Alcoólicas/psicologia , Depressores do Sistema Nervoso Central/sangue , Cicloeptanos/farmacologia , Escuridão , Relação Dose-Resposta a Droga , Etanol/sangue , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Piperidinas/farmacologia , Receptores Opioides/agonistas , Receptores Opioides/genética , Receptor de Nociceptina
14.
ACS Cent Sci ; 5(6): 992-1001, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31263758

RESUMO

Mitragyna speciosa, more commonly known as kratom, is a plant native to Southeast Asia, the leaves of which have been used traditionally as a stimulant, analgesic, and treatment for opioid addiction. Recently, growing use of the plant in the United States and concerns that kratom represents an uncontrolled drug with potential abuse liability, have highlighted the need for more careful study of its pharmacological activity. The major active alkaloid found in kratom, mitragynine, has been reported to have opioid agonist and analgesic activity in vitro and in animal models, consistent with the purported effects of kratom leaf in humans. However, preliminary research has provided some evidence that mitragynine and related compounds may act as atypical opioid agonists, inducing therapeutic effects such as analgesia, while limiting the negative side effects typical of classical opioids. Here we report evidence that an active metabolite plays an important role in mediating the analgesic effects of mitragynine. We find that mitragynine is converted in vitro in both mouse and human liver preparations to the much more potent mu-opioid receptor agonist 7-hydroxymitragynine and that this conversion is mediated by cytochrome P450 3A isoforms. Further, we show that 7-hydroxymitragynine is formed from mitragynine in mice and that brain concentrations of this metabolite are sufficient to explain most or all of the opioid-receptor-mediated analgesic activity of mitragynine. At the same time, mitragynine is found in the brains of mice at very high concentrations relative to its opioid receptor binding affinity, suggesting that it does not directly activate opioid receptors. The results presented here provide a metabolism-dependent mechanism for the analgesic effects of mitragynine and clarify the importance of route of administration for determining the activity of this compound. Further, they raise important questions about the interpretation of existing data on mitragynine and highlight critical areas for further research in animals and humans.

15.
Exp Cell Res ; 374(1): 38-45, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30419192

RESUMO

IGFBP-3 has both stimulatory and inhibitory effects on cancer progression. The growth of EO771 mammary carcinoma cells as syngeneic tumors in C57BL/6 mice is reduced in Igfbp3-null (BP3KO) mice, suggesting that systemic IGFBP-3 enhances tumor progression. In this study we assessed the growth of EO771 cells expressing human IGFBP-3 in BP3KO mice. Cells expressing hIGFBP-3 showed decreased proliferation in vitro and increased levels of IGF-1 receptor (IGF1R) protein but not mRNA, consistent with sequestration of endogenous IGF by IGFBP-3. The growth rate of these cells was restored by exposure to IGF-1 or analogues with reduced affinity for IGFBP-3 (long Arg3-IGF-1) or IGF1R (Leu24-IGF-1). In EO771 cells implanted orthotopically into mice, hIGFBP-3 expression by the cells inhibited tumor establishment in BP3KO but not wild-type mice. For tumors that successfully established, final weight was not affected significantly by hIGFBP-3 expression. However, final tumor weight was inversely related to intratumoral T cell counts, and sera from BP3KO mice with tumors showed low-titer immunoreactivity against IGFBP-3. The contrasting effects on tumor establishment and progression of IGFBP-3 expressed by mammary carcinoma cells, compared to systemic stromal and circulating IGFBP-3, highlights the complexity of growth regulation by IGFBP-3 in mammary tumors.


Assuntos
Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Microambiente Tumoral , Imunidade Adaptativa , Tecido Adiposo/patologia , Animais , Anticorpos/sangue , Anticorpos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Mamárias Animais/sangue , Neoplasias Mamárias Animais/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microambiente Tumoral/imunologia
17.
Endocr Relat Cancer ; 25(2): 111-122, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217518

RESUMO

Epidemiological studies show an association between obesity and poor breast cancer prognosis. We previously demonstrated that global IGFBP-3 deficiency, in IGFBP-3-null mice, resulted in a 50% reduction in mammary tumour growth over 3 weeks relative to tumours in wild-type (WT) C57BL/6 mice. This growth reduction was ameliorated by high fat feeding-induced obesity. This study aimed to examine how IGFBP-3 promotes tumour growth by influencing the immune tumour microenvironment in healthy and obese mice. Syngeneic EO771 cells, which lack detectable IGFBP-3 expression, were grown as orthotopic tumours in WT and IGFBP-3-null C57BL/6 mice placed on either a control chow or a high-fat diet (HFD), and examined by quantitative PCR and immunohistochemistry. In WT mice, increased stromal expression of IGFBP-3 was positively associated with tumour growth, supporting the hypothesis that IGFBP-3 in the microenvironment promotes tumour progression. Examining markers of immune cell subsets, gene expression of Ifng, Cd8a, Cd8b1 and Tnf and CD8 measured by immunohistochemistry were elevated in tumours of IGFBP-3-null mice compared to WT, indicating an accumulation of CD8+ T cells, but this increase was absent if the IGFBP-3-null mice had been exposed to HFD. Expression of these genes was negatively associated with tumour growth. Although similar among groups overall, Nkg2d and Tnfsf10 tumoural expression was associated with decreased tumour growth. Overall, the results of this study provide an immune-based mechanism by which host IGFBP-3 may promote breast tumour growth in the EO771 murine breast cancer model, and suggest that targeting IGFBP-3 might make a novel contribution to immune therapy for breast cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/imunologia , Neoplasias Mamárias Experimentais/imunologia , Animais , Dieta Hiperlipídica , Feminino , Perfilação da Expressão Gênica , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
18.
J Neurochem ; 143(3): 268-281, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28881029

RESUMO

To identify neuropeptides that are regulated by cocaine, we used a quantitative peptidomic technique to examine the relative levels of neuropeptides in several regions of mouse brain following daily intraperitoneal administration of 10 mg/kg cocaine or saline for 7 days. A total of 102 distinct peptides were identified in one or more of the following brain regions: nucleus accumbens, caudate putamen, frontal cortex, and ventral tegmental area. None of the peptides detected in the caudate putamen or frontal cortex were altered by cocaine administration. Three peptides in the nucleus accumbens and seven peptides in the ventral tegmental area were significantly decreased in cocaine-treated mice. Five of these ten peptides are derived from proSAAS, a secretory pathway protein and neuropeptide precursor. To investigate whether proSAAS peptides contribute to the physiological effects of psychostimulants, we examined acute responses to cocaine and amphetamine in the open field with wild-type (WT) and proSAAS knockout (KO) mice. Locomotion was stimulated more robustly in the WT compared to mutant mice for both psychostimulants. Behavioral sensitization to amphetamine was not maintained in proSAAS KO mice and these mutants failed to sensitize to cocaine. To determine whether the rewarding effects of cocaine were altered, mice were tested in conditioned place preference (CPP). Both WT and proSAAS KO mice showed dose-dependent CPP to cocaine that was not distinguished by genotype. Taken together, these results suggest that proSAAS-derived peptides contribute differentially to the behavioral sensitization to psychostimulants, while the rewarding effects of cocaine appear intact in mice lacking proSAAS.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Hipercinese/induzido quimicamente , Locomoção/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Anfetamina/farmacologia , Animais , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neuropeptídeos , Núcleo Accumbens/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
19.
FEBS Lett ; 591(12): 1627-1636, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28504339

RESUMO

Endomorphins (EMs) have been proposed as the endogenous ligand agonists of the µ-opioid receptor; however, no propeptide precursor protein for EMs has been identified. Here, to identify the presumed precursor of EMs, we designed an immunoscreening assay using specific affinity-purified rabbit antisera raised against synthetic EMs in a whole-mouse brain cDNA library. Following this approach, we identify a DNA sequence encoding a protein precursor, which we name proMexneurin, that contains three different peptide sequences: Mexneurin-1 (an EM-like peptide), Mexneurin-2, and Mexneurin-3, a peptide which appears to be unrelated to EMs. RT-PCR analysis and in situ hybridization reveal a widespread distribution of proMexneurin mRNA throughout the mouse brain. Both Mexneurin-1 and Mexneurin-3 peptides display biological activities in the mouse CNS.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/citologia , Encéfalo/fisiologia , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Potenciais Evocados , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Ligantes , Masculino , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fases de Leitura Aberta , Técnicas de Patch-Clamp , Precursores de Proteínas/química , Precursores de Proteínas/genética , Processamento de Proteína Pós-Traducional , Proteólise , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Análise de Sequência de DNA
20.
Transl Res ; 185: 13-23, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28554003

RESUMO

We have previously shown that topical opioids including morphine and its congeners promote healing of full thickness ischemic wounds in rats. We examined the contribution of mu opioid receptor (MOPr)-mediated healing of full thickness ischemic wounds using MOPr and delta or kappa opioid receptor knockout (KO) mice. Wound closure in the early (day 5) as well as later phases was delayed in topical morphine or PBS-treated MOPr-KO mice compared with reciprocal treatments of wounds in wild-type (WT) mice. MOPr expression was significantly upregulated at 30 min in the wound margins and colocalized with wound margins and vasculature in the epidermal and dermal layers of the skin. We next examined whether neuropeptide expression was involved in the mechanism of MOPr-mediated wound closure. Substance P (SP) and calcitonin gene-related peptide immunoreactivity (ir) was significantly increased in the skin of MOPr-KO mice as compared with WT mice. Neuropeptide-ir was increased significantly in PBS-treated wounds of MOPr and WT mice, but morphine treatment reduced neuropeptide immunoreactivity in both as compared with PBS. Wounding of keratinocytes led to the release of opioid peptide beta-endorphin (ß-END) in conditioned medium, which stimulated the proliferation of endothelial cells. MOPr-selective (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2, CTOP) and nonselective OPr antagonist naloxone-inhibited endothelial proliferation induced by wounded keratinocyte-conditioned medium. In addition, accelerated wound area closure in vitro by morphine was suppressed by methylnaltrexone, a nonselective OPr antagonist with high affinity for MOPr. Morphine and its congeners stimulated the proliferation of endothelial cells from WT mice but not those from MOPr-KO mice. Furthermore, morphine-induced mitogen-activated protein kinase/extracellular signal-regulated kinase phosphorylation in endothelial cells was significantly decreased in MOPr-KO mice as compared with WT mice. Collectively, these data suggest that MOPr plays a critical role in the proliferation phase with the formation of granulation tissue during wound healing.


Assuntos
Analgésicos Opioides/uso terapêutico , Isquemia/patologia , Morfina/uso terapêutico , Receptores Opioides/metabolismo , Cicatrização/fisiologia , Administração Tópica , Analgésicos Opioides/administração & dosagem , Animais , Regulação da Expressão Gênica/fisiologia , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Morfina/administração & dosagem , Receptores Opioides/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...