Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34298180

RESUMO

In the last decade, there has been an increase in the study of the ecology of deep-sea organisms. One way to understand an organism's ecology is the study of its metabolism. According to literature, deep-sea sharks possess a lower anaerobic enzyme activity than their shallow-water counterparts, but no difference has been observed regarding their aerobic enzyme activities. These studies have suggested deep-sea sharks should be slow and listless swimmers. However, other studies based on video observations have revealed differences in cruise swimming speed between different species. The present study examined muscles of squaliform sharks, including both luminous and non-luminous species. We combined measurements of the relative amounts of red and white muscle with assays of enzymes that are used as markers for aerobic (citrate synthase, malate dehydrogenase) and anaerobic (lactate dehydrogenase) metabolism, searching for a relationship with cruising speeds. Non-luminous deep-sea species displayed lower aerobic enzyme activities but similar anaerobic enzyme activities than the benthic shallow-water counterpart (Squalus acanthias). Conversely, luminous Etmopteridae species were found to have similar aerobic enzyme activities to S. acanthias but displayed lower anaerobic enzyme activities. Analyses revealed that red muscle proportion and aerobic enzyme activities were positively related to the cruise swimming speed. In contrast, Dalatias licha, which swims at the slowest cruise swimming speed ever recorded, presented a very low aerobic metabolic phenotype (lower aerobic marker enzymes and less red muscle). Finally, the values obtained for white muscle proportion and anaerobic metabolic phenotype suggested a high burst capacity for D. licha and non-luminous sharks.


Assuntos
Citrato (si)-Sintase/metabolismo , Proteínas de Peixes/metabolismo , L-Lactato Desidrogenase/metabolismo , Malato Desidrogenase/metabolismo , Músculo Esquelético/metabolismo , Tubarões/metabolismo , Animais , Citrato (si)-Sintase/genética , Proteínas de Peixes/genética , L-Lactato Desidrogenase/genética , Malato Desidrogenase/genética , Músculo Esquelético/crescimento & desenvolvimento , Tubarões/genética , Tubarões/crescimento & desenvolvimento , Natação
2.
Photochem Photobiol ; 96(1): 37-45, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31441051

RESUMO

Among Etmopteridae and Dalatiidae, luminous species use hormonal control to regulate bioluminescence. Melatonin (MT) triggers light emission and, conversely, alpha melanocyte-stimulating hormone (α-MSH) actively reduces ongoing luminescence. Prolactin (PRL) acts differentially, triggering light emission in Etmopteridae and inhibiting it in Dalatiidae. Interestingly, these hormones are also known as regulators of skin pigment movements in vertebrates. One other hormone, the adrenocorticotropic hormone (ACTH), also members of the skin pigmentation regulators, is here pharmacologically tested on the light emission. Results show that ACTH inhibits luminescence in both families. Moreover, as MT and α-MSH/ACTH receptors are members of the G-protein coupled receptor (GPCR) family, we investigated the effect of hormonal treatments on the cAMP level of photophores through specific cAMP assays. Our results highlight the involvement of ACTH and cAMP in the control of light emission in sharks and suggest a functional similarity between skin pigment migration and luminescence control, this latter being mediated by pigment movements in the light organ-associated iris-like structure cells.


Assuntos
Hormônio Adrenocorticotrópico/fisiologia , AMP Cíclico/fisiologia , Animais , Luminescência , Tubarões , Pigmentação da Pele
3.
Artigo em Inglês | MEDLINE | ID: mdl-31278989

RESUMO

Shark's buoyancy depends on two types of force: (i) the hydrostatic force which is mainly provided by their liver filled with low density lipids and (ii) the hydrodynamic force which is provided by the morphology of their body and fins. Shallow-water shark species are usually negatively buoyant, whereas deep-sea shark species have been suggested to display neutral buoyancy. It has been suggested that species that are close to the neutrality would have less red aerobic muscle fibers. Here, we investigated several liver features (the hepatosomatic index, the oil content and the lipid composition) playing a major role regarding the buoyancy of three deep-sea shark species (Etmopterus molleri, Etmopterus spinax and Isistius brasiliensis) and one shallow-water counterpart (Galeus melastomus). We used FT-Raman and FT-MIR spectroscopy to qualify/quantify the lipid composition of their liver. Our results showed that most deep-sea shark species studied have liver features providing more buoyancy than their shallow-water counterparts, appart from E. molleri which shows liver's features that resemble more shallow-water shark species (e.g. G. melastomus). Finally, data regarding liver features of several deep-sea shark species from the literature were added and the red aerobic muscle distribution/proportion of nine species was measured, to reveal how these parameters might be related. Our results showed that sharks characterized by a liver providing more hydrostatic force possess proportionally less red aerobic muscles than sharks having a liver that contributes less to their buoyancy. Therefore, our results i.e. deep-sea shark displaying less red aerobic muscle with a liver providing more buoyancy, support low metabolic rates hence slow swimming speed.


Assuntos
Fígado/fisiologia , Músculos/anatomia & histologia , Oceanos e Mares , Tubarões/fisiologia , Aerobiose , Animais , Pressão Hidrostática , Modelos Lineares , Metabolismo dos Lipídeos , Tamanho do Órgão , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
4.
Zoological Lett ; 5: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873292

RESUMO

BACKGROUND: In the darkness of the ocean, an impressive number of taxa have evolved the capability to emit light. Many mesopelagic organisms emit a dim ventral glow that matches with the residual environmental light in order to camouflage themselves (counterillumination function). Sharks use their luminescence mainly for this purpose. Specific lateral marks have been observed in Etmopteridae sharks (one of the two known luminous shark families) suggesting an inter/intraspecific recognition. Conversely, dorsal luminescence patterns are rare within these deep-sea organisms. RESULTS: Here we report evidence that Etmopterus spinax, Etmopterus molleri and Etmopterus splendidus have dorsal luminescence patterns. These dorsal patterns consist of specific lines of luminous organs, called photophores, on the rostrum, dorsal area and at periphery of the spine. This dorsal light seems to be in contrast with the counterilluminating role of ventral photophores. However, skin photophores surrounding the defensive dorsal spines show a precise pattern supporting an aposematism function for this bioluminescence. Using in situ imaging, morphological and histological analysis, we reconstructed the dorsal light emission pattern on these species, with an emphasis on the photogenic skin associated with the spine. Analyses of video footage validated, for the first time, the defensive function of the dorsal spines. Finally, we did not find evidence that Etmopteridae possess venomous spine-associated glands, present in Squalidae and Heterondontidae, via MRI and CT scans. CONCLUSION: This work highlights for the first time a species-specific luminous dorsal pattern in three deep-sea lanternsharks. We suggest an aposematic use of luminescence to reveal the presence of the dorsal spines. Despite the absence of venom apparatus, the defensive use of spines is documented for the first time in situ by video recordings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...