Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36946430

RESUMO

Collective cell rotations are widely used during animal organogenesis. Theoretical and in vitro studies have conceptualized rotating cells as identical rigid-point objects that stochastically break symmetry to move monotonously and perpetually within an inert environment. However, it is unclear whether this notion can be extrapolated to a natural context, where rotations are ephemeral and heterogeneous cellular cohorts interact with an active epithelium. In zebrafish neuromasts, nascent sibling hair cells invert positions by rotating ≤180° around their geometric center after acquiring different identities via Notch1a-mediated asymmetric repression of Emx2. Here, we show that this multicellular rotation is a three-phasic movement that progresses via coherent homotypic coupling and heterotypic junction remodeling. We found no correlation between rotations and epithelium-wide cellular flow or anisotropic resistive forces. Moreover, the Notch/Emx2 status of the cell dyad does not determine asymmetric interactions with the surrounding epithelium. Aided by computer modeling, we suggest that initial stochastic inhomogeneities generate a metastable state that poises cells to move and spontaneous intercellular coordination of the resulting instabilities enables persistently directional rotations, whereas Notch1a-determined symmetry breaking buffers rotational noise.


Assuntos
Células Ciliadas Auditivas , Peixe-Zebra , Animais , Microscopia de Vídeo , Epitélio , Mecanorreceptores
2.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168373

RESUMO

Layer specific computations in the brain rely on neuronal processes establishing synaptic connections with specific partners in distinct laminae. In the Drosophila lobula plate neuropile, the axons of the four subtypes of T4 and T5 visual motion direction-selective neurons segregate into four layers, based on their directional preference, and form synapses with distinct subsets of postsynaptic neurons. Four bi-stratified inhibitory lobula plate intrinsic cells exhibit a consistent synaptic pattern, receiving excitatory T4/T5 inputs in one layer, and conveying inhibitory signals to an adjacent layer. This layered arrangement establishes motion opponency. Here, we identify layer-specific expression of different receptor-ligand pairs belonging to the Beat and Side families of Cell Adhesion Molecules (CAMs) between T4/T5 neurons and their postsynaptic partners. Genetic analysis reveals that Beat/Side mediated interactions are required to restrict T4/T5 axonal innervation to a single layer. We propose that Beat/Side contribute to synaptic specificity by biasing adhesion between synaptic partners before synaptogenesis.

3.
Cell ; 173(2): 485-498.e11, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576455

RESUMO

Understanding how complex brain wiring is produced during development is a daunting challenge. In Drosophila, information from 800 retinal ommatidia is processed in distinct brain neuropiles, each subdivided into 800 matching retinotopic columns. The lobula plate comprises four T4 and four T5 neuronal subtypes. T4 neurons respond to bright edge motion, whereas T5 neurons respond to dark edge motion. Each is tuned to motion in one of the four cardinal directions, effectively establishing eight concurrent retinotopic maps to support wide-field motion. We discovered a mode of neurogenesis where two sequential Notch-dependent divisions of either a horizontal or a vertical progenitor produce matching sets of two T4 and two T5 neurons retinotopically coincident with pairwise opposite direction selectivity. We show that retinotopy is an emergent characteristic of this neurogenic program and derives directly from neuronal birth order. Our work illustrates how simple developmental rules can implement complex neural organization.


Assuntos
Drosophila/fisiologia , Percepção de Movimento/fisiologia , Retina/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Locomoção/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Lobo Óptico de Animais não Mamíferos/química , Lobo Óptico de Animais não Mamíferos/metabolismo , Receptores Notch/metabolismo , Retina/citologia , Vias Visuais
4.
Annu Rev Genet ; 51: 501-527, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28961025

RESUMO

The Drosophila visual system has become a premier model for probing how neural diversity is generated during development. Recent work has provided deeper insight into the elaborate mechanisms that control the range of types and numbers of neurons produced, which neurons survive, and how they interact. These processes drive visual function and influence behavioral preferences. Other studies are beginning to provide insight into how neuronal diversity evolved in insects by adding new cell types and modifying neural circuits. Some of the most powerful comparisons have been those made to the Drosophila visual system, where a deeper understanding of molecular mechanisms allows for the generation of hypotheses about the evolution of neural anatomy and function. The evolution of new neural types contributes additional complexity to the brain and poses intriguing questions about how new neurons interact with existing circuitry. We explore how such individual changes in a variety of species might play a role over evolutionary timescales. Lessons learned from the fly visual system apply to other neural systems, including the fly central brain, where decisions are made and memories are stored.


Assuntos
Evolução Biológica , Drosophila melanogaster/metabolismo , Rede Nervosa/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Retina/metabolismo , Visão Binocular/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/classificação , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/citologia , Discos Imaginais/metabolismo , Larva/citologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Rede Nervosa/citologia , Neurópilo/citologia , Neurópilo/metabolismo , Organogênese/genética , Células Fotorreceptoras de Invertebrados/citologia , Filogenia , Retina/citologia
5.
Elife ; 52016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27740911

RESUMO

The temporal transcription factor Krüppel has a dual role in the development of neurons.


Assuntos
Neurônios , Fatores de Transcrição/genética , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento
6.
FEBS Lett ; 590(15): 2435-2453, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27404003

RESUMO

Nervous system development is a process that integrates cell proliferation, differentiation, and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic, and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerged while integrating this information.


Assuntos
Apoptose/genética , Diferenciação Celular/genética , Sistema Nervoso Central/crescimento & desenvolvimento , Drosophila/genética , Animais , Linhagem da Célula/genética , Proliferação de Células/genética , Sistema Nervoso Central/metabolismo , Drosophila/crescimento & desenvolvimento , Neurônios/metabolismo
7.
Biol Open ; 4(7): 903-9, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26002931

RESUMO

Animals have evolved two general strategies to counter injury and maintain physiological function. The most prevalent is protection by isolating vital organs into body cavities. However, protection is not optimal for sensory systems because their external components need to be exposed to the environment to fulfill their receptive function. Thus, a common strategy to maintain sensory abilities against persistent environmental insult involves repair and regeneration. However, whether age or frequent injuries affect the regenerative capacity of sensory organs remains unknown. We have found that neuromasts of the zebrafish lateral line regenerate mechanosensory hair cells after recurrent severe injuries and in adulthood. Moreover, neuromasts can reverse transient imbalances of Notch signaling that result in defective organ proportions during repair. Our results reveal inextinguishable hair-cell regeneration in the lateral line, and suggest that the neuromast epithelium is formed by plastic territories that are maintained by continuous intercellular communication.

8.
Sci Signal ; 7(348): pe26, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25336612

RESUMO

Asymmetric division of neural progenitor cells is a crucial event in the generation of neuronal diversity and involves the segregation of distinct proteins into daughter cells, thereby promoting unique differentiation programs. Although it was known that Notch signaling acts postmitotically to orchestrate differentiation of daughter cells from asymmetrically dividing precursor cells, Bhat reported a previously uncharacterized role for Notch that occurs before cell division to promote the asymmetric localization of the protein Numb and the positioning of the cleavage furrow. Numb is an inhibitor of Notch activity; thus, this mechanism forms a regulatory feedback loop to control asymmetric cytokinesis and differentiation.


Assuntos
Diferenciação Celular/fisiologia , Citocinese/fisiologia , Células-Tronco Neurais/metabolismo , Receptores Notch/metabolismo , Animais , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Receptores Notch/genética
9.
Front Neuroanat ; 7: 33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130521

RESUMO

Direct videomicroscopic visualization of organ formation and regeneration in toto is a powerful strategy to study cellular processes that often cannot be replicated in vitro. Intravital imaging aims at quantifying changes in tissue architecture or subcellular organization over time during organ development, regeneration or degeneration. A general feature of this approach is its reliance on the optical isolation of defined cell types in the whole animals by transgenic expression of fluorescent markers. Here we describe a simple and robust method to analyze sensory hair-cell development and regeneration in the zebrafish lateral line by high-resolution intravital imaging using laser-scanning confocal microscopy (LSCM) and selective plane illumination microscopy (SPIM). The main advantage of studying hair-cell regeneration in the lateral line is that it occurs throughout the life of the animal, which allows its study in the most natural context. We detail protocols to achieve continuous videomicroscopy for up to 68 hours, enabling direct observation of cellular behavior, which can provide a sensitive assay for the quantitative classification of cellular phenotypes and cell-lineage reconstruction. Modifications to this protocol should facilitate pharmacogenetic assays to identify or validate otoprotective or reparative drugs for future clinical strategies aimed at preserving aural function in humans.

10.
Dev Cell ; 24(4): 338-40, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23449468

RESUMO

In a recent issue of Neuron, Chen et al. (2013) show that apoptosis is required to ensure the even distribution of a class of retinal ganglion cells (ipRGCs), which sense luminance both intrinsically and through input from rods and cones. Disrupting apoptosis impairs photoentrainment mediated by rods/cones, but not that mediated by ipRGC-expressed melanopsin.

11.
Development ; 138(6): 1143-52, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21343366

RESUMO

Bilateral symmetric tissues must interpret axial references to maintain their global architecture during growth or repair. The regeneration of hair cells in the zebrafish lateral line, for example, forms a vertical midline that bisects the neuromast epithelium into perfect mirror-symmetric plane-polarized halves. Each half contains hair cells of identical planar orientation but opposite to that of the confronting half. The establishment of bilateral symmetry in this organ is poorly understood. Here, we show that hair-cell regeneration is strongly directional along an axis perpendicular to that of epithelial planar polarity. We demonstrate compartmentalized Notch signaling in neuromasts, and show that directional regeneration depends on the development of hair-cell progenitors in polar compartments that have low Notch activity. High-resolution live cell tracking reveals a novel process of planar cell inversions whereby sibling hair cells invert positions immediately after progenitor cytokinesis, demonstrating that oriented progenitor divisions are dispensable for bilateral symmetry. Notwithstanding the invariably directional regeneration, the planar polarization of the epithelium eventually propagates symmetrically because mature hair cells move away from the midline towards the periphery of the neuromast. We conclude that a strongly anisotropic regeneration process that relies on the dynamic stabilization of progenitor identity in permissive polar compartments sustains bilateral symmetry in the lateral line.


Assuntos
Padronização Corporal/genética , Compartimento Celular/fisiologia , Células Epiteliais/fisiologia , Receptores Notch/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Rastreamento de Células/métodos , Embrião não Mamífero , Células Epiteliais/metabolismo , Células Ciliadas Auditivas/fisiologia , Sistema da Linha Lateral/embriologia , Sistema da Linha Lateral/metabolismo , Modelos Biológicos , Receptores Notch/genética , Receptores Notch/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Imagem com Lapso de Tempo/métodos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...