Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 94(1-1): 012224, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27575140

RESUMO

We report an experimental study of the dynamics of two coupled magnetic dipoles. The experiment consists in two coplanar permanent disk magnets separated by a distance d, each allowed to rotate on a fixed parallel axis-each magnet's axis being perpendicular to its dipolar moment vector. A torque of adjustable strength can be externally applied to one of the magnets, the other magnet being free. The driving torque may be time-independent or temporally fluctuating. We study the influence of the parameters of the driving torque on the dynamics of the coupled system, in particular the emergence of dynamical regimes such as stochastic reversals. We report transitions between stationary and stochastic reversal regimes. All the observed features can be understood by a simple mechanical dynamical model. The transition between statistically stationary regimes and reversals is explained introducing an effective potential energy incorporating both the coupling between magnets and the external driving. Relations between this simple experimental model with macroscopic models of magnetic spin coupling, as well as with chaotic reversals of turbulent dynamos, are discussed.

2.
Phys Rev E ; 93: 043120, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176403

RESUMO

Scalar transport by turbulent flows is best described in terms of Lagrangian parcel motions. Here we measure the Eulerian distance travel along Lagrangian trajectories in a simple point vortex flow to determine the probabilistic impulse response function for scalar transport in the absence of molecular diffusion. As expected, the mean squared Eulerian displacement scales ballistically at very short times and diffusively for very long times, with the displacement distribution at any given time approximating that of a random walk. However, significant deviations in the displacement distributions from Rayleigh are found. The probability of long distance transport is reduced over inertial range time scales due to spatial and temporal intermittency. This can be modeled as a series of trapping events with durations uniformly distributed below the Eulerian integral time scale. The probability of long distance transport is, on the other hand, enhanced beyond that of the random walk for both times shorter than the Lagrangian integral time and times longer than the Eulerian integral time. The very short-time enhancement reflects the underlying Lagrangian velocity distribution, while that at very long times results from the spatial and temporal variation of the flow at the largest scales. The probabilistic impulse response function, and with it the expectation value of the scalar concentration at any point in space and time, can be modeled using only the evolution of the lowest spatial wave number modes (the mean and the lowest harmonic) and an eddy based constrained random walk that captures the essential velocity phase relations associated with advection by vortex motions. Preliminary examination of Lagrangian tracers in three-dimensional homogeneous isotropic turbulence suggests that transport in that setting can be similarly modeled.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25019895

RESUMO

Hydrodynamic and magnetic behaviors in a modified experimental setup of the von Kármán sodium flow-where one disk has been replaced by a propeller-are investigated. When the rotation frequencies of the disk and the propeller are different, we show that the fully turbulent hydrodynamic flow undergoes a global bifurcation between two configurations. The bistability of these flow configurations is associated with the dynamics of the central shear layer. The bistable flows are shown to have different dynamo efficiencies; thus for a given rotation rate of the soft-iron disk, two distinct magnetic behaviors are observed depending on the flow configuration. The hydrodynamic transition controls the magnetic field behavior, and bifurcations between high and low magnetic field branches are investigated.


Assuntos
Hidrodinâmica , Campos Magnéticos , Modelos Químicos , Reologia/métodos , Soluções/química , Soluções/efeitos da radiação , Simulação por Computador , Transferência de Energia , Movimento (Física)
4.
Artigo em Inglês | MEDLINE | ID: mdl-24329323

RESUMO

The increasing availability of time- and space-resolved data describing human activities and interactions gives insights into both static and dynamic properties of human behavior. In practice, nevertheless, real-world data sets can often be considered as only one realization of a particular event. This highlights a key issue in social network analysis: the statistical significance of estimated properties. In this context, we focus here on the assessment of quantitative features of specific subset of nodes in empirical networks. We present a method of statistical resampling based on bootstrapping groups of nodes under constraints within the empirical network. The method enables us to define acceptance intervals for various null hypotheses concerning relevant properties of the subset of nodes under consideration in order to characterize by a statistical test its behavior as "normal" or not. We apply this method to a high-resolution data set describing the face-to-face proximity of individuals during two colocated scientific conferences. As a case study, we show how to probe whether colocating the two conferences succeeded in bringing together the two corresponding groups of scientists.

5.
PLoS One ; 8(9): e73970, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040129

RESUMO

BACKGROUND: Contacts between patients, patients and health care workers (HCWs) and among HCWs represent one of the important routes of transmission of hospital-acquired infections (HAI). A detailed description and quantification of contacts in hospitals provides key information for HAIs epidemiology and for the design and validation of control measures. METHODS AND FINDINGS: We used wearable sensors to detect close-range interactions ("contacts") between individuals in the geriatric unit of a university hospital. Contact events were measured with a spatial resolution of about 1.5 meters and a temporal resolution of 20 seconds. The study included 46 HCWs and 29 patients and lasted for 4 days and 4 nights. 14,037 contacts were recorded overall, 94.1% of which during daytime. The number and duration of contacts varied between mornings, afternoons and nights, and contact matrices describing the mixing patterns between HCW and patients were built for each time period. Contact patterns were qualitatively similar from one day to the next. 38% of the contacts occurred between pairs of HCWs and 6 HCWs accounted for 42% of all the contacts including at least one patient, suggesting a population of individuals who could potentially act as super-spreaders. CONCLUSIONS: Wearable sensors represent a novel tool for the measurement of contact patterns in hospitals. The collected data can provide information on important aspects that impact the spreading patterns of infectious diseases, such as the strong heterogeneity of contact numbers and durations across individuals, the variability in the number of contacts during a day, and the fraction of repeated contacts across days. This variability is however associated with a marked statistical stability of contact and mixing patterns across days. Our results highlight the need for such measurement efforts in order to correctly inform mathematical models of HAIs and use them to inform the design and evaluation of prevention strategies.


Assuntos
Doenças Transmissíveis/transmissão , Infecção Hospitalar/transmissão , Quartos de Pacientes , Controle de Doenças Transmissíveis , Doenças Transmissíveis/diagnóstico , Infecção Hospitalar/diagnóstico , Infecção Hospitalar/prevenção & controle , Transmissão de Doença Infecciosa , Humanos , Estudos Longitudinais
6.
Artigo em Inglês | MEDLINE | ID: mdl-23944544

RESUMO

Predicting dynamo self-generation in liquid metal experiments has been an ongoing question for many years. In contrast to simple dynamical systems for which reliable techniques have been developed, the ability to predict the dynamo capacity of a flow and the estimate of the corresponding critical value of the magnetic Reynolds number (the control parameter of the instability) has been elusive, partly due to the high level of turbulent fluctuations of flows in such experiments (with kinetic Reynolds numbers in excess of 10(6)). We address these issues here, using the von Kármán sodium experiment and studying its response to an externally applied magnetic field. We first show that a dynamo threshold can be estimated from analysis related to critical slowing down and susceptibility divergence, in configurations for which dynamo action is indeed observed. These approaches are then applied to flow configurations that have failed to self-generate magnetic fields within operational limits, and we quantify the dynamo capacity of these configurations.

7.
Phys Rev Lett ; 107(21): 214501, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181885

RESUMO

The mixing properties of turbulent flows are, at first order, related to the dynamics of separation of particle pairs. Scaling laws for the evolution in time of the mean distance between particle pairs (t) have been proposed since the pioneering work of Richardson. We analyze a model which shares some features with 3D experimental and numerical turbulence, and suggest that pure scaling laws are only subdominant. The dynamics is dominated by a very wide distribution of "delay times" t(d), the duration for which particle pairs remain together before their separation increases significantly. The delay time distribution is exponential for small separations and evolves towards a flat distribution at large separations. The observed (t) behavior is best understood as an average over separations that individually follow the Richardson-Obukhov scaling, r(2) ∝ t(3), but each only after a fluctuating time delay t(d), where t(d) is distributed uniformly.

8.
Rev Sci Instrum ; 82(9): 095112, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974624

RESUMO

A new type of velocimeter, capable of local velocity measurements in conducting fluids, is introduced. The principle of the "magnetic-distortion probe" is based on the measurement of the induced magnetic field by the flow of a conducting fluid in the vicinity of a localized magnetic field. The new velocimeter has no moving parts, and can be enclosed in a sealed cap, easing the implementation in harsh environments, such as liquid metals. The proposed method allows one to probe both the continuous part and fluctuations of the velocity, the temporal and spatial resolution being linked to the actual geometric configuration of the probe. A prototype probe has been tested in a gallinstan pipe flow and in a fully turbulent flow of liquid gallium generated by the counter rotation of two coaxial impellers in a cylinder. The signals have been compared to a reference potential probe and show very good agreement both for time-averaged velocities and turbulent fluctuations. The prototype is shown to detect motion from a few cm s(-1) to a few m s(-1). Moreover, the use of the magnetic-distortion probe with large-scale applied magnetic field is discussed.

9.
PLoS One ; 6(8): e23176, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858018

RESUMO

BACKGROUND: Little quantitative information is available on the mixing patterns of children in school environments. Describing and understanding contacts between children at school would help quantify the transmission opportunities of respiratory infections and identify situations within schools where the risk of transmission is higher. We report on measurements carried out in a French school (6-12 years children), where we collected data on the time-resolved face-to-face proximity of children and teachers using a proximity-sensing infrastructure based on radio frequency identification devices. METHODS AND FINDINGS: Data on face-to-face interactions were collected on Thursday, October 1(st) and Friday, October 2(nd) 2009. We recorded 77,602 contact events between 242 individuals (232 children and 10 teachers). In this setting, each child has on average 323 contacts per day with 47 other children, leading to an average daily interaction time of 176 minutes. Most contacts are brief, but long contacts are also observed. Contacts occur mostly within each class, and each child spends on average three times more time in contact with classmates than with children of other classes. We describe the temporal evolution of the contact network and the trajectories followed by the children in the school, which constrain the contact patterns. We determine an exposure matrix aimed at informing mathematical models. This matrix exhibits a class and age structure which is very different from the homogeneous mixing hypothesis. CONCLUSIONS: We report on important properties of the contact patterns between school children that are relevant for modeling the propagation of diseases and for evaluating control measures. We discuss public health implications related to the management of schools in case of epidemics and pandemics. Our results can help define a prioritization of control measures based on preventive measures, case isolation, classes and school closures, that could reduce the disruption to education during epidemics.


Assuntos
Infecções Respiratórias/transmissão , Comportamento Social , Meio Social , Algoritmos , Criança , Humanos , Modelos Biológicos , Instituições Acadêmicas , Fatores de Tempo
10.
BMC Med ; 9: 87, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21771290

RESUMO

BACKGROUND: The spread of infectious diseases crucially depends on the pattern of contacts between individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. However, there are few empirical studies available that provide estimates of the number and duration of contacts between social groups. Moreover, their space and time resolutions are limited, so that data are not explicit at the person-to-person level, and the dynamic nature of the contacts is disregarded. In this study, we aimed to assess the role of data-driven dynamic contact patterns between individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. METHODS: We considered high-resolution data about face-to-face interactions between the attendees at a conference, obtained from the deployment of an infrastructure based on radiofrequency identification (RFID) devices that assessed mutual face-to-face proximity. The spread of epidemics along these interactions was simulated using an SEIR (Susceptible, Exposed, Infectious, Recovered) model, using both the dynamic network of contacts defined by the collected data, and two aggregated versions of such networks, to assess the role of the data temporal aspects. RESULTS: We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation that retains only the topology of the contact network fails to reproduce the size of the epidemic. CONCLUSIONS: These results have important implications for understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics. Please see related article BMC Medicine, 2011, 9:88.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Busca de Comunicante/métodos , Surtos de Doenças , Simulação por Computador , Humanos , Fatores de Tempo
11.
Phys Rev Lett ; 106(15): 154501, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568563

RESUMO

The motion of a large, neutrally buoyant, particle freely advected by a turbulent flow is determined experimentally. We demonstrate that both the translational and angular accelerations exhibit very wide probability distributions, a manifestation of intermittency. The orientation of the angular velocity with respect to the trajectory, as well as the translational acceleration conditioned on the spinning velocity, provides evidence of a lift force acting on the particle.

12.
Rev Sci Instrum ; 82(3): 033906, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21456762

RESUMO

We study the six-dimensional dynamics--position and orientation--of a large sphere advected by a turbulent flow. The movement of the sphere is recorded with two high-speed cameras. Its orientation is tracked using a novel, efficient algorithm; it is based on the identification of possible orientation "candidates" at each time step, with the dynamics later obtained from maximization of a likelihood function. Analysis of the resulting linear and angular velocities and accelerations reveal a surprising intermittency for an object whose size lies in the inertial range, close to the integral scale of the underlying turbulent flow.

13.
J Theor Biol ; 271(1): 166-80, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21130777

RESUMO

The availability of new data sources on human mobility is opening new avenues for investigating the interplay of social networks, human mobility and dynamical processes such as epidemic spreading. Here we analyze data on the time-resolved face-to-face proximity of individuals in large-scale real-world scenarios. We compare two settings with very different properties, a scientific conference and a long-running museum exhibition. We track the behavioral networks of face-to-face proximity, and characterize them from both a static and a dynamic point of view, exposing differences and similarities. We use our data to investigate the dynamics of a susceptible-infected model for epidemic spreading that unfolds on the dynamical networks of human proximity. The spreading patterns are markedly different for the conference and the museum case, and they are strongly impacted by the causal structure of the network data. A deeper study of the spreading paths shows that the mere knowledge of static aggregated networks would lead to erroneous conclusions about the transmission paths on the dynamical networks.


Assuntos
Doenças Transmissíveis/transmissão , Modelos Biológicos , Comportamento Social , Doenças Transmissíveis/epidemiologia , Epidemias , Humanos , Incidência , Relações Interpessoais , Dinâmica Populacional
14.
Phys Rev Lett ; 105(2): 024501, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20867710

RESUMO

We study a simple magnetohydrodynamical approach in which hydrodynamics and MHD turbulence are coupled in a shell model, with given dynamo constraints in the large scales. We consider the case of a low Prandtl number fluid for which the inertial range of the velocity field is much wider than that of the magnetic field. Random reversals of the magnetic field are observed and it shown that the magnetic field has a nontrivial evolution--linked to the nature of the hydrodynamics turbulence.

15.
PLoS One ; 5(7): e11596, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20657651

RESUMO

BACKGROUND: Digital networks, mobile devices, and the possibility of mining the ever-increasing amount of digital traces that we leave behind in our daily activities are changing the way we can approach the study of human and social interactions. Large-scale datasets, however, are mostly available for collective and statistical behaviors, at coarse granularities, while high-resolution data on person-to-person interactions are generally limited to relatively small groups of individuals. Here we present a scalable experimental framework for gathering real-time data resolving face-to-face social interactions with tunable spatial and temporal granularities. METHODS AND FINDINGS: We use active Radio Frequency Identification (RFID) devices that assess mutual proximity in a distributed fashion by exchanging low-power radio packets. We analyze the dynamics of person-to-person interaction networks obtained in three high-resolution experiments carried out at different orders of magnitude in community size. The data sets exhibit common statistical properties and lack of a characteristic time scale from 20 seconds to several hours. The association between the number of connections and their duration shows an interesting super-linear behavior, which indicates the possibility of defining super-connectors both in the number and intensity of connections. CONCLUSIONS: Taking advantage of scalability and resolution, this experimental framework allows the monitoring of social interactions, uncovering similarities in the way individuals interact in different contexts, and identifying patterns of super-connector behavior in the community. These results could impact our understanding of all phenomena driven by face-to-face interactions, such as the spreading of transmissible infectious diseases and information.


Assuntos
Dispositivo de Identificação por Radiofrequência , Humanos , Relações Interpessoais
16.
Rev Sci Instrum ; 81(5): 055112, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20515177

RESUMO

We present an apparatus that generates statistically homogeneous and isotropic turbulence with a mean flow that is less than 10% of the fluctuating velocity in a volume of the size of the integral length scale. The apparatus is shaped as an icosahedron where at each of the 12 vertices the flow is driven by independently controlled propellers. By adjusting the driving of the different propellers the isotropy and homogeneity of the flow can be tuned, while keeping the mean flow weak.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 2): 046314, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19518340

RESUMO

Experiments have shown that Lagrangian statistics in turbulent flows display Gaussianly distributed velocity values and non-Gaussianly distributed velocity differences or accelerations. Coherent flow structures in the form of vortices have often been proposed to play an important role in this behavior. Here we examine the origin of these statistics using both continuously stirred n -body point-vortex simulations and analytic random variable transformation in a simplified model of randomly distributed vortices. We conclude that Lagrangian velocity distributions can be understood in terms of dominant nearest vortex neighbor contributions. Accelerations likewise reflect vortical contributions, but at smallest temporal increment are dominated, not by the motion of the Lagrangian tracers, but by vorticity reconfiguration within the domain.

18.
Rev Sci Instrum ; 78(6): 065105, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17614636

RESUMO

We have developed novel instrumentation for making Lagrangian measurements of temperature in diverse fluid flows. A small neutrally buoyant capsule is equipped with on-board electronics which measures temperature and transmits the data via a wireless radio frequency link to a desktop computer. The device has 80 dB dynamic range, resolving millikelvin changes in temperature with up to 100 ms sampling time. The capabilities of these "smart particles" are demonstrated in turbulent thermal convection in water. We measure temperature variations as the particle is advected by the convective motion and analyze its statistics. Additional use of cameras allow us to track the particle position and to report here the first direct measurement of Lagrangian heat flux transfer in Rayleigh-Bénard convection. The device shows promise for opening new research in a broad variety of fluid systems.


Assuntos
Reologia/instrumentação , Telemetria/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Reprodutibilidade dos Testes , Reologia/métodos , Sensibilidade e Especificidade , Telemetria/métodos , Condutividade Térmica , Termografia/instrumentação , Termografia/métodos
19.
Phys Rev Lett ; 97(14): 144508, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-17155262

RESUMO

Millimeter-sized air bubbles rising through still water are known to exhibit zigzag and spiral oscillatory trajectories. We present a system of four ordinary differential equations which effectively model these dynamics. The model is based on Kirchhoff's equations and several physical arguments derived from our experimental observations. In the framework of this model, the zigzag and the spiral motions result from the same underlying bifurcation to wake instability.

20.
Phys Rev Lett ; 92(14): 144503, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-15089546

RESUMO

We consider the induction of a magnetic field in flows of an electrically conducting fluid at low magnetic Prandtl number and large kinetic Reynolds number. Using the separation between the magnetic and kinetic diffusive length scales, we propose a new numerical approach. The coupled magnetic and fluid equations are solved using a mixed scheme, where the magnetic field fluctuations are fully resolved and the velocity fluctuations at small scale are modeled using a large eddy simulation (LES) scheme. We study the response of a forced Taylor-Green flow to an externally applied field: topology of the mean induction and time fluctuations at fixed locations. The results are in remarkable agreement with existing experimental data; a global 1/f behavior at long times is also evidenced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...