Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(15): 7879-7884, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30931467

RESUMO

We propose an environment for information encoding and transmission via a nanoconfined molecular Quantum Dot Cellular Automata (QCA) wire, composed of a single row of head-to-tail interacting 2-dots molecular switches. While most of the research in the field refers to dots-bearing molecules bound on some type of surface, forming a bidimensional array of square cells capable of performing QCA typical functions, we propose here to embed the information bearing elements within the channels of a microporous matrix. In this way molecules would self-assemble in a row as a consequence of adsorption inside the pores of the material, forming an encased wire, with the crystalline environment giving stability and protection to the structure. DFT calculations on a diferrocenyl carborane, previously proposed and synthesized [J. A. Christie, R. P. Forrest, S. A. Corcelli, N. A. Wasio, R. C. Quardokus, R. Brown, S. A. Kandel, Y. Lu, C. S. Lent and K. W. Henderson, Angew. Chem., Int. Ed., 2015, 54, 15448], were performed both in vacuum and inside the channels of zeolite ITQ-51, indicating that information encoding and transmission is possible within the nanoconfined environment.

2.
J Chem Phys ; 148(19): 194108, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307206

RESUMO

We investigate the coarse-graining of host-guest systems under the perspective of the local distribution of pore occupancies, along with the physical meaning and actual computability of the coarse-interaction terms. We show that the widely accepted approach, in which the contributions to the free energy given by the molecules located in two neighboring pores are estimated through Monte Carlo simulations where the two pores are kept separated from the rest of the system, leads to inaccurate results at high sorbate densities. In the coarse-graining strategy that we propose, which is based on the Bethe-Peierls approximation, density-independent interaction terms are instead computed according to local effective potentials that take into account the correlations between the pore pair and its surroundings by means of mean-field correction terms without the need for simulating the pore pair separately. Use of the interaction parameters obtained this way allows the coarse-grained system to reproduce more closely the equilibrium properties of the original one. Results are shown for lattice-gases where the local free energy can be computed exactly and for a system of Lennard-Jones particles under the effect of a static confining field.

3.
J Chem Phys ; 143(18): 184115, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26567654

RESUMO

We developed a coarse-grained description of the phenomenology of diffusive processes, in terms of a space of discrete events and its representation as a network. Once a proper classification of the discrete events underlying the diffusive process is carried out, their transition matrix is calculated on the basis of molecular dynamics data. This matrix can be represented as a directed, weighted network where nodes represent discrete events, and the weight of edges is given by the probability that one follows the other. The structure of this network reflects dynamical properties of the process of interest in such features as its modularity and the entropy rate of nodes. As an example of the applicability of this conceptual framework, we discuss here the physics of diffusion of small non-polar molecules in a microporous material, in terms of the structure of the corresponding network of events, and explain on this basis the diffusivity trends observed. A quantitative account of these trends is obtained by considering the contribution of the various events to the displacement autocorrelation function.

4.
J Chem Phys ; 141(7): 074109, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25149777

RESUMO

We developed a coarse-grained model suitable for the study of adsorbed molecules in microporous materials. A partition of the space available to the motion of adsorbed molecules was carried out, which allows to formulate the dynamics in terms of jumps between discrete regions. The probabilities of observing given pairs of successive jumps were calculated from Molecular Dynamics (MD) simulations, performed on small systems, and used to drive the motion of molecules in a lattice-gas model. Dynamics is thus reformulated in terms of event-space dynamics and this allows to treat the system despite its inherent non markovity. Despite the assumptions enforced in the algorithm, results show that it can be applied to various spherical molecules adsorbed in the all-silica zeolite ITQ-29, establishing a suitable direct bridge between MD simulation results and coarse-grained models.


Assuntos
Simulação de Dinâmica Molecular , Adsorção , Conformação Molecular , Fatores de Tempo , Zeolitas/química
5.
J Chem Phys ; 135(12): 124110, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21974515

RESUMO

We applied a method based on a block cellular automaton (BCA) algorithm to the study of diffusion of various binary mixtures adsorbed in a model microporous material, such as zeolite ZK4. Our aim was to test the capability of our model to cope with systems in which more than one species is present, using a set of parameters based on heuristic considerations from the molecular dynamics (MD) results present in the literature. A rigorous methodology for the assignment of suitable adsorption energies and diffusion activation barriers for our BCA has not been developed yet, nonetheless the results were quite interesting at this stage and we obtained a good qualitative agreement with MD data in the literature. The mixtures we investigated contain CO(2), which causes the so-called segregation-effect, a strong suppression of self-diffusivity of co-adsorbed species. This effect gives rise to relevant problems in the application of some well established and robust methods, while our model proved to be able to reproduce both the common features and the segregation anomaly in the trends of diffusion.


Assuntos
Dióxido de Carbono/química , Zeolitas/química , Difusão , Metano/química , Simulação de Dinâmica Molecular , Nitrogênio/química , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...