Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(1): 1634-1642, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222522

RESUMO

Paper-based electrochemical devices (PEDs) have emerged as versatile platforms that bridge analytical chemistry and materials science, demonstrating advantages of portability, cost-effectiveness, and environmental sustainability. This study investigates the integration of a graphene pseudoreference electrode (GPRE) into a PED, and it exhibits potential advantages over the traditional Ag/AgCl pseudoreference electrode (PRE). In addition, the electrochemical properties and stability of GPRE are compared with those of the traditional Ag/AgCl PRE. The results demonstrate that GPRE exhibits a stable and reproducible potential during electrochemical measurement throughout 180 days, demonstrating its suitability as an alternative to an expensive metal PRE. Furthermore, a GPRE-incorporated paper-based device is designed and evaluated for use in the electrochemical detection of cadmium (Cd) and lead (Pb) using an in situ bismuth-modified electrode. The GPRE-incorporated PED exhibited good analytical performance, with a low limit of detection of 0.69 and 5.77 ng mL-1 and electrochemical sensitivities of 70.16 and 38.34 µA·mL·µg-1·cm-2 for Cd(II) and Pb(II), respectively. More than 99.9% accuracy of the sensor was obtained for both ions with respect to conventional inductively coupled plasma-mass spectrometry. The results highlight the effectiveness and suitability of the GPRE-incorporated PED as a sensor for various applications, such as environmental monitoring, food quality control, and medical diagnostics.

2.
Mikrochim Acta ; 186(7): 472, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243577

RESUMO

A paper-based electrochemical sensor is described that is based on the use of thiol-terminated poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC-SH) that was self-assembled on a gold nanoparticle-modified screen-printed electrode (SPE). The SPE sensor was used for label-free detection of C-reactive protein (CRP). Gold nanoparticles (AuNPs) were first electrodeposited on the SPCE, followed by the self-assembly of PMPC-SH on gold. The electrochemical response of the modified SPE to CRP was measured by differential pulse voltammetry (DPV). If the CRP on the paper device is contacted with Ca (II) ions, the current (measured by using hexacyanoferrate as the electrochemical probe) decreases. The signal drops in the 5 to 5000 ng·mL-1 CRP concentration range, and the lower detection limit (at 3 SD/slope) is 1.6 ng·mL-1. The use of a PMPC-modified surface also reduces the nonspecific adsorption of proteins. The sensor is not interfered by bilirubin, myoglobin and albumin. It was successfully applied to CRP detection in certified human serum. This sensor is applicable as an attractive protocol for an inexpensive, highly sensitive, and disposable material for electrochemical detection of CRP. Graphical abstract Schematic presentation of highly sensitive and disposable paper-based electrochemical sensor using thiol-terminated poly(2-methacryloyloxyethyl phosphorylcholine) in the presence of Ca2+ for the label-free C-reactive protein detection. The current was measured by differential pulse voltammetry.


Assuntos
Proteína C-Reativa/análise , Técnicas Eletroquímicas/métodos , Fosforilcolina/análogos & derivados , Ácidos Polimetacrílicos/química , Compostos de Sulfidrila/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Papel , Fosforilcolina/química
3.
Sensors (Basel) ; 15(9): 21427-77, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26343676

RESUMO

Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Espectrometria de Fluorescência/métodos , Colorimetria , Dopamina/sangue , Ouro , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...