Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 9: e12395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820176

RESUMO

The aim of this study was to generate and analyze the atlas of the loggerhead turtle blood transcriptome by RNA-seq, as well as identify and characterize thioredoxin (Tnxs) and peroxiredoxin (Prdxs) antioxidant enzymes of the greatest interest in the control of peroxide levels and other biological functions. The transcriptome of loggerhead turtle was sequenced using the Illumina Hiseq 2000 platform and de novo assembly was performed using the Trinity pipeline. The assembly comprised 515,597 contigs with an N50 of 2,631 bp. Contigs were analyzed with CD-Hit obtaining 374,545 unigenes, of which 165,676 had ORFs encoding putative proteins longer than 100 amino acids. A total of 52,147 (31.5%) of these transcripts had significant homology matches in at least one of the five databases used. From the enrichment of GO terms, 180 proteins with antioxidant activity were identified, among these 28 Prdxs and 50 putative Tnxs. The putative proteins of loggerhead turtles encoded by the genes Prdx1, Prdx3, Prdx5, Prdx6, Txn and Txnip were predicted and characterized in silico. When comparing Prdxs and Txns of loggerhead turtle with homologous human proteins, they showed 18 (9%), 52 (18%) 94 (43%), 36 (16%), 35 (33%) and 74 (19%) amino acid mutations respectively. However, they showed high conservation in active sites and structural motifs (98%), with few specific modifications. Of these, Prdx1, Prdx3, Prdx5, Prdx6, Txn and Txnip presented 0, 25, 18, three, six and two deleterious changes. This study provides a high quality blood transcriptome and functional annotation of loggerhead sea turtles.

2.
Toxics ; 9(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805397

RESUMO

To understand changes in enzyme activity and gene expression as biomarkers of exposure to methylmercury, we exposed loggerhead turtle erythrocytes (RBCs) to concentrations of 0, 1, and 5 mg L-1 of MeHg and de novo transcriptome were assembled using RNA-seq. The analysis of differentially expressed genes (DEGs) indicated that 79 unique genes were dysregulated (39 upregulated and 44 downregulated genes). The results showed that MeHg altered gene expression patterns as a response to the cellular stress produced, reflected in cell cycle regulation, lysosomal activity, autophagy, calcium regulation, mitochondrial regulation, apoptosis, and regulation of transcription and translation. The analysis of DEGs showed a low response of the antioxidant machinery to MeHg, evidenced by the fact that genes of early response to oxidative stress were not dysregulated. The RBCs maintained a constitutive expression of proteins that represented a good part of the defense against reactive oxygen species (ROS) induced by MeHg.

3.
Fam Cancer ; 17(4): 587-599, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29302811

RESUMO

Hereditary leiomyomatosis and renal cell cancer syndrome (HLRCC) is a very rare disease that is inherited in an autosomal dominant manner. Affected patients may develop from cutaneous and uterine leiomyomas to type 2 papillary renal cell carcinoma (Schmidt and Linehan, Int J Nephrol Renovasc Dis 7:253-260, 2014). HLRCC is caused by germline mutations in the FH gene, which produces the fumarate hydratase protein that participates in the tricarboxylic acid cycle during the conversion of fumarate to malate. In FH-deficient cells, high concentrations of fumarate lead to a series of intricate events, which seem to be responsible for the malignant transformation (Yang et al., J Clin Invest 123(9):3652-3658, 2013) (Bardella et al., J Pathol 225(1):4-11, 2011). Among these events, one that is gaining attention is the pathological activation of the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which has been found in several types of cancer and is implicated in the expression of genes associated with antioxidant responses (Linehan and Rouault, Clin Cancer Res 19(13):3345-3352, 2013). In this article, we present the results of a gene expression analysis performed on peripheral blood cells from patients with HLRCC syndrome, where upregulation of numerous NRF2 targets and the differential expression of two key genes, Jun dimerization protein 2 (JDP2) and Phosphoglycerate mutase family member 5 (PGAM5), which are involved in the control of this pathway, was observed.


Assuntos
Regulação Neoplásica da Expressão Gênica , Leiomiomatose/genética , Fator 2 Relacionado a NF-E2/genética , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Cutâneas/genética , Neoplasias Uterinas/genética , Adulto , Estudos de Casos e Controles , Humanos , Leucócitos Mononucleares/fisiologia , Masculino , Proteínas Mitocondriais/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosfoproteínas Fosfatases/genética , Proteínas Repressoras/genética
4.
Proteomics Clin Appl ; 9(9-10): 817-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25921334

RESUMO

PURPOSE: Collapsin response mediator protein-2 (CRMP2) is a CNS protein involved in neuronal development, axonal and neuronal growth, cell migration, and protein trafficking. Recent studies have linked perturbations in CRMP2 function to neurodegenerative disorders such as Alzheimer's disease, neuropathic pain, and Batten disease, and to psychiatric disorders such as schizophrenia. Like most proteins, CRMP2 functions though interactions with a molecular network of proteins and other molecules. EXPERIMENTAL DESIGN: Here, we have attempted to identify additional proteins of the CRMP2 interactome to provide further leads about its roles in neurological functions. We used a combined co-immunoprecipitation and shotgun proteomic approach in order to identify CRMP2 protein partners. RESULTS: We identified 78 CRMP2 protein partners not previously reported in public protein interaction databases. These were involved in seven biological processes, which included cell signaling, growth, metabolism, trafficking, and immune function, according to Gene Ontology classifications. Furthermore, 32 different molecular functions were found to be associated with these proteins, such as RNA binding, ribosomal functions, transporter activity, receptor activity, serine/threonine phosphatase activity, cell adhesion, cytoskeletal protein binding and catalytic activity. In silico pathway interactome construction revealed a highly connected network with the most overrepresented functions corresponding to semaphorin interactions, along with axon guidance and WNT5A signaling. CONCLUSIONS AND CLINICAL RELEVANCE: Taken together, these findings suggest that the CRMP2 pathway is critical for regulating neuronal and synaptic architecture. Further studies along these lines might uncover novel biomarkers and drug targets for use in drug discovery.


Assuntos
Encéfalo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Humanos , Ligação Proteica , Esquizofrenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...