Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biomed Imaging ; 2(2): 147-155, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425368

RESUMO

Characterizing and identifying cells in multicellular in vitro models remain a substantial challenge. Here, we utilize hyperspectral confocal Raman microscopy and principal component analysis coupled with linear discriminant analysis to form a label-free, noninvasive approach for classifying bone cells and osteosarcoma cells. Through the development of a library of hyperspectral Raman images of the K7M2-wt osteosarcoma cell lines, 7F2 osteoblast cell lines, RAW 264.7 macrophage cell line, and osteoclasts induced from RAW 264.7 macrophages, we built a linear discriminant model capable of correctly identifying each of these cell types. The model was cross-validated using a k-fold cross validation scheme. The results show a minimum of 72% accuracy in predicting cell type. We also utilize the model to reconstruct the spectra of K7M2 and 7F2 to determine whether osteosarcoma cancer cells and normal osteoblasts have any prominent differences that can be captured by Raman. We find that the main differences between these two cell types are the prominence of the ß-sheet protein secondary structure in K7M2 versus the α-helix protein secondary structure in 7F2. Additionally, differences in the CH2 deformation Raman feature highlight that the membrane lipid structure is different between these cells, which may affect the overall signaling and functional contrasts. Overall, we show that hyperspectral confocal Raman microscopy can serve as an effective tool for label-free, nondestructive cellular classification and that the spectral reconstructions can be used to gain deeper insight into the differences that drive different functional outcomes of different cells.

2.
ACS Appl Mater Interfaces ; 16(8): 11003-11012, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373710

RESUMO

Bonding diamond to the back side of gallium nitride (GaN) electronics has been shown to improve thermal management in lateral devices; however, engineering challenges remain with the bonding process and characterizing the bond quality for vertical device architectures. Here, integration of these two materials is achieved by room-temperature compression bonding centimeter-scale GaN and a diamond die via an intermetallic bonding layer of Ti/Au. Recent attempts at GaN/diamond bonding have utilized a modified surface activation bonding (SAB) method, which requires Ar fast atom bombardment immediately followed by bonding within the same tool under ultrahigh vacuum (UHV) conditions. The method presented here does not require a dedicated SAB tool yet still achieves bonding via a room-temperature metal-metal compression process. Imaging of the buried interface and the total bonding area is achieved via transmission electron microscopy (TEM) and confocal acoustic scanning microscopy (C-SAM), respectively. The thermal transport quality of the bond is extracted from spatially resolved frequency-domain thermoreflectance (FDTR) with the bonded areas boasting a thermal boundary conductance of >100 MW/m2·K. Additionally, Raman maps of GaN near the GaN-diamond interface reveal a low level of compressive stress, <80 MPa, in well-bonded regions. FDTR and Raman were coutilized to map these buried interfaces and revealed some poor thermally bonded areas bordered by high-stress regions, highlighting the importance of spatial sampling for a complete picture of bond quality. Overall, this work demonstrates a novel method for thermal management in vertical GaN devices that maintains low intrinsic stresses while boasting high thermal boundary conductances.

3.
Nature ; 601(7894): 556-561, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082421

RESUMO

As the length scales of materials decrease, the heterogeneities associated with interfaces become almost as important as the surrounding materials. This has led to extensive studies of emergent electronic and magnetic interface properties in superlattices1-9. However, the interfacial vibrations that affect the phonon-mediated properties, such as thermal conductivity10,11, are measured using macroscopic techniques that lack spatial resolution. Although it is accepted that intrinsic phonons change near boundaries12,13, the physical mechanisms and length scales through which interfacial effects influence materials remain unclear. Here we demonstrate the localized vibrational response of interfaces in strontium titanate-calcium titanate superlattices by combining advanced scanning transmission electron microscopy imaging and spectroscopy, density functional theory calculations and ultrafast optical spectroscopy. Structurally diffuse interfaces that bridge the bounding materials are observed and this local structure creates phonon modes that determine the global response of the superlattice once the spacing of the interfaces approaches the phonon spatial extent. Our results provide direct visualization of the progression of the local atomic structure and interface vibrations as they come to determine the vibrational response of an entire superlattice. Direct observation of such local atomic and vibrational phenomena demonstrates that their spatial extent needs to be quantified to understand macroscopic behaviour. Tailoring interfaces, and knowing their local vibrational response, provides a means of pursuing designer solids with emergent infrared and thermal responses.

4.
Nat Commun ; 11(1): 170, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924790

RESUMO

Reduced-dimensional perovskites are attractive light-emitting materials due to their efficient luminescence, color purity, tunable bandgap, and structural diversity. A major limitation in perovskite light-emitting diodes is their limited operational stability. Here we demonstrate that rapid photodegradation arises from edge-initiated photooxidation, wherein oxidative attack is powered by photogenerated and electrically-injected carriers that diffuse to the nanoplatelet edges and produce superoxide. We report an edge-stabilization strategy wherein phosphine oxides passivate unsaturated lead sites during perovskite crystallization. With this approach, we synthesize reduced-dimensional perovskites that exhibit 97 ± 3% photoluminescence quantum yields and stabilities that exceed 300 h upon continuous illumination in an air ambient. We achieve green-emitting devices with a peak external quantum efficiency (EQE) of 14% at 1000 cd m-2; their maximum luminance is 4.5 × 104 cd m-2 (corresponding to an EQE of 5%); and, at 4000 cd m-2, they achieve an operational half-lifetime of 3.5 h.

5.
J Phys Chem A ; 123(41): 8807-8822, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31591891

RESUMO

Chalcogenopyrylium monomethine (CGPM) dyes represent a class of environmentally activated singlet oxygen generators with applications in photodynamic therapy (PDT) and photoassisted chemotherapy (PACT). Upon binding to genomic material, the dyes are presumed to rigidify, allowing for intersystem crossing to outcompete excited state deactivation by internal conversion. This results in large triplet yields and hence large singlet oxygen yields. To understand the nature of the internal conversion process that controls the activity of the dyes, femtosecond transient absorption experiments were performed on a series of S-, Se-, and Te-substituted CGPM dyes. For S- and Se-substituted species in methanol, rapid internal conversion from the singlet excited state, S1, occurs in ∼5 ps, deactivating the optically active excited state. The internal conversion produces a distorted ground-state species that returns to its equilibrium structure in ∼20 ps. For Te-substituted species, the internal conversion competes with rapid intersystem crossing to the lowest triplet state, T1, which occurs with a ∼ 100 ps time constant in methanol. In more viscous methanol/glycerol mixtures, the internal conversion to the ground state slows by 2 orders of magnitude, occurring in 500-600 ps. For Se- and Te-substituted species in viscous environments, the slower internal conversion rate allows a larger triplet yield. Using femtosecond stimulated Raman spectroscopy (FSRS) and time-dependent density functional theory (TD-DFT), the internal conversion is determined to occur by twisting of the pyrylium rings about the monomethine bridge. Evolution from the distorted ground state occurs by twisting back to the S0 equilibrium structure. The environmentally dependent photoactivity of CGPM dyes is discussed in the context of PDT and PACT applications.

6.
J Am Chem Soc ; 140(35): 11046-11057, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30091908

RESUMO

Donor-π-acceptor complexes for solar energy conversion are commonly composed of a chomophore donor and a semiconductor nanoparticle acceptor separated by a π bridge. The electronic coupling between the donor and acceptor is known to be large when the π systems of the donor and bridge are coplanar. However, the accessibility of highly coplanar geometries in the excited state is not well understood. In this work, we clarify the relationship between the bridge structure and excited-state donor-bridge coplanarization by comparing rhodamine sensitizers with either phenylene (O-Ph) or thiophene (O-Th) bridge units. Using a variety of optical spectroscopic and computational techniques, we model the S1 excited-state potential surfaces of O-Ph and O-Th along the dihedral coordinate of donor-bridge coplanarization, τ. We find that O-Th accesses a nearly coplanar (τ = 8°) global minimum geometry in S1 where significant intramolecular charge transfer (ICT) character is developed. The S1 coplanar geometry is populated in <10 ps and is stable for ca. 1 ns. Importantly, O-Ph is sterically hindered from rotation along τ and therefore remains at its initial S1 equilibrium geometry far from coplanarity (τ = 56°). Our results demonstrate that donor-bridge dye sensitizers utilizing thiophene bridges should facilitate strong donor-acceptor coupling by an ultrafast and stabilizing coplanarization mechanism in S1. The coplanarization will result in strong donor-acceptor coupling, potentially increasing the electron transfer efficiency. These findings provide further explanation for the success of thiophene as a bridge unit and can be used to guide the informed design of new molecular sensitizers.

7.
Nat Mater ; 17(6): 550-556, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29760510

RESUMO

Low-dimensional perovskites have-in view of their high radiative recombination rates-shown great promise in achieving high luminescence brightness and colour saturation. Here we investigate the effect of electron-phonon interactions on the luminescence of single crystals of two-dimensional perovskites, showing that reducing these interactions can lead to bright blue emission in two-dimensional perovskites. Resonance Raman spectra and deformation potential analysis show that strong electron-phonon interactions result in fast non-radiative decay, and that this lowers the photoluminescence quantum yield (PLQY). Neutron scattering, solid-state NMR measurements of spin-lattice relaxation, density functional theory simulations and experimental atomic displacement measurements reveal that molecular motion is slowest, and rigidity greatest, in the brightest emitter. By varying the molecular configuration of the ligands, we show that a PLQY up to 79% and linewidth of 20 nm can be reached by controlling crystal rigidity and electron-phonon interactions. Designing crystal structures with electron-phonon interactions in mind offers a previously underexplored avenue to improve optoelectronic materials' performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...