Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 261(4): 625-639, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38206421

RESUMO

Centella asiatica (Indian pennywort) is a green leafy vegetable containing centelloside' (triterpenoid), a key phytochemical component in traditional medicine. Being a glycophytic species, they exhibit decline in growth performance and yield traits when subjected to water-deficit (WD) conditions. Glycine betaine (GB) is a low molecular-weight organic metabolite that plays a crucial role in abiotic stress conditions in higher plants. The objective of this study was to investigate the potential of GB in alleviating water-deficit stress (in terms of morphological and physiological responses) in two different genotypes of Indian pennywort, "Nakhon Pathom" (NP; high centelloside-yielding genotype) and "Pathum Thani" (PT; low centelloside-yielding genotype). The genotypes of Indian pennywort were propagated by stolon cutting and transplanted into plastic bags containing 2 kg of garden soil. At the flower-initiation stage (30 days after transplantation), uniform plant material was treated exogenously with 0 (control), 25, and 50 mM GB at 100 mL per plant (one-time foliar spray) and then divided into two groups, 1) well watered (WW; irrigated daily with 400 mL fresh water; 98% field capacity) and 2) water deficit (WD; withheld water for 14 days; 72% field capacity). Foliar application of GB (25 mM) significantly improved leaf osmotic potential in NP under WD conditions via osmotic adjustment by free proline and fructose. Differences in leaf temperature (Tleaf) between WD and WW in NP were maximized (+ 1.93 °C) and the gap of Tleaf was reduced in the case of 25-50 mM GB application. Similarly, crop water stress index (CWSI) in NP and PT plants under WD condition was significantly increased by 1.95- and 1.86-fold over the control, respectively; however, it was significantly decreased by exogenous GB application. Increasing Tleaf and CWSI in drought-stressed plants was closely related to stomatal closure, leading to reduced gas exchange parameters, i.e., stomatal conductance (gs), transpiration rate (E), net photosynthetic rate (Pn), and intercellular CO2 concentration (Ci), and consequently decreased plant biomass and total centelloside yield. Overall physiological, morphological, and secondary metabolite traits were enhanced in NP under WD conditions using 25 mM GB exogenous application compared with the control. The study highlights the significance of GB in Indian pennywort production under limited water irrigation (water deficit) with higher vegetable yield and phytochemical stabilization.


Assuntos
Betaína , Centella , Betaína/farmacologia , Centella/química , Centella/efeitos dos fármacos , Água/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Desidratação
2.
Physiol Mol Biol Plants ; 29(9): 1289-1299, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38024951

RESUMO

Iron (Fe) toxicity in plant species depends on the availability of Fe in the soil, uptake ability by the root system, and translocation rate to other parts of the plant. The aim of this study was to assess Fe uptake by root tissues of Catharanthus roseus, translocation rate to leaf tissues, and the impairment of plant physio-morphological characteristics. Fe uptake by the roots (~ 700 µg g-1 DW) of C. roseus was observed during the early exposure period (1 week), and translocation factor from root to shoot was fluctuated as an independent strategy. A high level of Fe content in the root tissues significantly inhibited root length and root dry weight. Under acidic pH condition, an enrichment of Fe in the shoots (~ 400 µg g-1 DW) led to increase in leaf temperature (> 2.5 °C compared to control) and crop stress index (> 0.6), resulting in stomatal closure, subsequently decreasing CO2 assimilation rate and H2O transpiration rate. An increment of CSI in Fe-stressed plants was negatively related to stomatal conductance, indicating stomatal closure with an increase in Fe in the leaf tissues. High Fe levels in the leaf tissues directly induced toxic symptoms including leaf bronzing, leaf spotting, leaf necrosis, leaf chlorosis, and leaf senescence in C. roseus plants. In summary, C. roseus was identified as a good candidate plant for Fe phytoextraction, depending on Fe bioaccumulation, therefore 50 mM Fe treatment was designated as an excess Fe to cause the growth inhibition, especially in the prolonged Fe incubation periods. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01379-5.

3.
Heliyon ; 9(7): e17747, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449177

RESUMO

Potential evapotranspiration (PET) is a crucial component of the hydrological cycle and energy balance. Although the Penman-Monteith (PM) model is the most widely used method to estimate daily PET, it requires temperature, relative humidity, solar radiation, and wind speed. In Thailand, the number of potential weather stations to provide the required data is limited, which resulted in the absence of some input variables in many locations. The objective of this study is to develop the revised potential evapotranspiration (RPET) model to estimate daily PET using Global Navigation Satellite System-derived Precipitable Water Vapor (GNSS-PWV) and temperature data. The multiple linear regression analysis was used to develop and validate the RPET model. The performance of the RPET model along with the Global Land Evaporation Amsterdam Model (GLEAM v3.2 b) and the European Centre for Medium-Range Weather Forecasts Reanalysis-5 (ERA5-Land) products was investigated using the PM model. The results revealed that the RPET model showed a strong correlation with the PM model (r = 0.85, RMSE = 0.97 mm day-1, RSR = 0.53, NSE = 0.72) under limited meteorological inputs. The RPET model performance was superior when compared to GLEAM and ERA5-Land (r = 0.80, RMSE = 1.06 mm day-1). Therefore, the proposed model is greatly suitable for daily PET estimation with only required GNSS-PWV and temperature data, and this can be implemented for drought assessment and water resources management.

4.
Environ Geochem Health ; 45(11): 7637-7649, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37402936

RESUMO

Indian camphorweed (Pluchea indica (L.) Less.) is used as herbal tea due to the presence of volatile aromatic oils and several phytochemical compounds. The aim of this study was to assess the impact of copper (Cu) contamination on the physiology and morphology of P. indica, and the health risks associated with its consumption as tea. The cuttings of P. indica were subjected to 0 mM (control), 5 mM (low Cu), and 20 mM (excess Cu) of CuSO4 treatments for 1, 2, and 4 weeks. Thereafter, Cu contamination as well as physiological and morphological parameters were assessed. Cu accumulation was higher in the root tissues of plants (25.8 folds higher as compared to the leaves) grown under 20 mM CuSO4 for 4 weeks. This increased Cu accumulation resulted in the inhibition of root length, root fresh weight, and root dry weight. Cu concentration was found maximum (1.36 µg g-1 DW) in the leaf tissues under 20 mM Cu exposure for 4 weeks, with the highest target hazard quotient (THQ = 1.85), whereas Cu was not detected in control. Under exposure to 20 mM Cu treatment for 4 weeks, leaf greenness, maximum quantum yield of photosystem II, and photon yield of photosystem II diminished by 21.4%, 16.1%, and 22.4%, respectively, as compared to the control. Leaf temperature was increased by 2.5 °C, and the crop stress index (CSI) exceeded 0.6 when exposed to 20 mM Cu treatment for 2 and 4 weeks; however, the control had a CSI below 0.5. This led to a reduced transpiration rate and stomatal conductance. In addition, the net photosynthetic rate was also found sensitive to Cu treatment, which resulted in decreased shoot and root growth. Based on the key results, it can be suggested that P. indica herbal tea derived from the foliage of plants grown under a 5 mM Cu level (0.75 µg g-1 DW) with a target hazard quotient below one aligns with the recommended dietary intake of Cu in leafy vegetables. The study recommends choosing cuttings from plants with a small canopy as plant material in the greenhouse microclimates to validate the growth performance in the Cu-contaminated soil and simulate the natural shrub architecture and life cycle.


Assuntos
Cobre , Chás de Ervas , Cobre/toxicidade , Cobre/química , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese , Antioxidantes/metabolismo , Folhas de Planta/metabolismo
5.
Environ Monit Assess ; 195(1): 128, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402920

RESUMO

Unmanned aerial vehicles (UAVs) equipped with multi-sensors are one of the most innovative technologies for measuring plant health and predicting final yield in field conditions, especially in the water deficit situation in rain-deprived regions. The objective of this investigation was to evaluate the individual plant and canopy-level measurements using UAV imageries in three different genotypes, Suwan4452 (drought-tolerant), Pac339, and S7328 (drought-sensitive) of maize (Zea mays L.) at vegetative and reproductive stages under WW (well-watered) and WD (water deficit) conditions. At the vegetative stage, only CWSI (crop water stress index) of Pac339 and S7328 under WD increased significantly by 1.86- and 1.69-fold over WW, whereas the vegetation indices (EVI2 (Enhanced Vegetation Index 2), OSAVI (Optimized Soil-Adjusted Vegetation Index), GNDVI (Green Normalized Difference Vegetation Index), NDRE (Normalized Difference Red Edge Index), and NDVI (Normalized Difference Vegetation Index)) derived from UAV multi-sensors did not vary. At the reproductive stage, CWSI in drought-sensitive genotype (S7328) under WD increased by 1.92-fold over WW. All the vegetation indices (EVI2, OSAVI, GNDVI, NDRE, and NDVI) of Pac339 and S7328 under WD decreased when compared with those of Suwan4452. NDVI derived from GreenSeeker® handheld and NDVI from UAV data was closely related (R2 = 0.5924). An increase in leaf temperature (Tleaf) and reduction in NDVI of WD stressed maize plants was observed (R2 = 0.5829) leading to yield loss (R2 = 0.5198). In summary, a close correlation was observed between the physiological data of individual plants and vegetation indices of canopy level (collected using a UAV platform) in drought-sensitive genotypes of maize crops under WD conditions, thus indicating its effectiveness in the classification of drought-tolerant genotypes.


Assuntos
Desidratação , Zea mays , Monitoramento Ambiental , Produtos Agrícolas , Folhas de Planta/fisiologia
6.
Protoplasma ; 259(4): 869-883, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34581924

RESUMO

Drought has been identified as a major factor restricting maize productivity worldwide, especially in the rainfed areas. The objective of the present study was to investigate the physiological adaptation strategies and sugar-related gene expression levels in three maize (Zea mays L.) genotypes with different drought tolerance abilities (Suwan4452, drought tolerant as a positive check; S7328, drought susceptible as a negative check; Pac339, drought susceptible) at the seedling stage. Ten-day old seedlings of maize genotypes were subjected to (i) well-watered (WW) or control and (ii) water-deficit (WD) conditions. Leaf osmotic potential of cv. S7328 under WD was significantly decreased by 1.35-1.45 folds compared with cv. Pac339 under WW, whereas it was retained in cv. Suwan4452, which utilized total soluble sugars as the major osmolytes for maintaining leaf greenness, Fv/Fm, ΦPSII, and stomatal function (Pn, net photosynthetic rate; gs, stomatal conductance; and E, transpiration rate). Interestingly, sucrose degradation (65% over the control) in cv. Pac339 under WD was evident in relation to the downregulation of the ZmSPS1 level, whereas glucose enrichment (1.65 folds over the control) was observed in relation to the upregulation of ZmSPS1 and ZmSUS1. Moreover, CWSI (crop water stress index), calculated from leaf temperature of stressed plants, was negatively correlated with E, gs, and Pn. Overall, growth characteristics, aboveground and belowground parts, in the drought-susceptible cv. Pac339 and cv. S7328, were significantly decreased (> 25% over the control), whereas these parameters in the drought-tolerant cv. Suwan4452 were unaffected. The study validates the use of leaf temperature, CWSI, Pn, gs, and E as sensitive parameters and overall growth characters as effective indices for drought tolerance screening in maize genotypes at the seedling stage. However, further experiments are required to validate the results observed in this study under field conditions.


Assuntos
Plântula , Zea mays , Desidratação/metabolismo , Secas , Osmorregulação , Plântula/metabolismo , Estresse Fisiológico , Zea mays/metabolismo
7.
Environ Sci Pollut Res Int ; 28(23): 29321-29331, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33555471

RESUMO

Aluminum (Al) toxicity in acidic soils is a major problem in rice crop production, especially in the acid sulfate soil (pH < 4.0). Selecting Al-tolerant varieties of rice with low toxicity is one of the most appropriate strategies to overcome this problem. In the present study, we investigated the Al content in different rice genotypes, IR64 (high yielding), RD35 (local acidic-tolerant), and Azucena (AZU, positive-check Al-tolerant), and their physiological and morphological adaptations under a wide range Al (10, 25, 50 mM [Al2(SO4)3]) treatments in the greenhouse conditions. Under 50-mM Al treatment, Al levels in the root tissues of rice seedlings cvs. AZU and IR64 were increased by 2.74- and 2.10-fold over control. Interestingly, Al contents in the roots of cv. RD35 were also exhibited by 2.04-fold over control. Similarly, Al contents in the leaves trend to increase in relation to a degree of Al treatments, leading to increase leaf temperature, chlorophyll degradation, limited CO2 assimilation, and negative effect on root traits under 50 mM Al were evidently observed. Therefore, leaf temperature was considered a sensitive parameter regulated by high concentration of Al (50 mM), leading to increase in crop water stress index (CWSI > 0.6) and decrease in stomata conductance. Net photosynthetic rate (Pn) and transpiration rate (E) in rice seedlings of cv. RD35 subjected to 50 mM Al were significantly dropped by 74.76% and 47.71% over the control, respectively, resulting in reduced growth performances in terms of root length (26.57% reduction) and shoot fresh weight (46.15% reduction). An enrichment of Al in the root tissues without toxicity in rice cv. AZU may further help in discovering the Al homeostasis. In summary, Al enrichment in rice genotypes grown under Al-treatments was evidently observed in the root, leading to the limited root growth, root length, and root dry weight, especially in cv. RD35. Al restriction in the root tissues of cv. AZU (Al-tolerant) may play a key role as defense mechanisms to avoid translocation to other organs and the stomata closure was an alternative key factor to limit H2O transpiration.


Assuntos
Oryza , Alumínio/toxicidade , Fotossíntese , Folhas de Planta , Raízes de Plantas , Plântula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...