Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18452, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323734

RESUMO

Two molecular cytology approaches, (i) time-gated immunoluminescence assay (TGiA) and (ii) Raman-active immunolabeling assay (RiA), have been developed to detect prostate cancer (PCa) cells in urine from five prostate cancer patients. For TGiA, PCa cells stained by a biocompatible europium chelate antibody-conjugated probe were quantitated by automated time-gated microscopy (OSAM). For RiA, PCa cells labeled by antibody-conjugated Raman probe were detected by Raman spectrometer. TGiA and RiA were first optimized by the detection of PCa cultured cells (DU145) spiked into control urine, with TGiA-OSAM showing single-cell PCa detection sensitivity, while RiA had a limit of detection of 4-10 cells/mL. Blinded analysis of each patient urine sample, using MIL-38 antibody specific for PCa cells, was performed using both assays in parallel with control urine. Both assays detected very low abundance PCa cells in patient urine (3-20 PCa cells per mL by TGiA, 4-13 cells/mL by RiA). The normalized mean of the detected PCa cells per 1 ml of urine was plotted against the clinical data including prostate specific antigen (PSA) level and Clinical Risk Assessment for each patient. Both cell detection assays showed correlation with PSA in the high risk patients but aligned with the Clinical Assessment rather than with PSA levels of the low/intermediate risk patients. Despite the limited available urine samples of PCa patients, the data presented in this proof-of-principle work is promising for the development of highly sensitive diagnostic urine tests for PCa.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Biomarcadores Tumorais/urina , Próstata , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/urina , Pelve
2.
Anal Chim Acta ; 1209: 339863, 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35569873

RESUMO

Surface modification and functionalization is typically required to engineer upconversion nanoparticles (UCNPs) for biosensing and bioimaging applications. Nevertheless, despite various antibody conjugation methods having been applied to UCNPs, no consensus has been reached on the best choice, as the results from individual studies are largely unable to be compared due to inadequate assessment of the properties of the conjugated products. Here, we introduce a systematic approach to quantitatively evaluate the biological activity of antibody-conjugated UCNPs. We determine that the optimal antibody conjugation efficiency to our colominic acid polysaccharide-coated UCNPs via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxy succinimide (EDC/NHS) coupling is approximately 70%, corresponding to 16 antibodies per nanoparticle of 63 nm hydrodynamic diameter, with on average 12 of the 16 antibodies maintaining their affinity to the target antigens. The binding ability of the antibody-conjugated UCNPs to the antigen was well preserved, as verified by enzyme-linked immunosorbent assay (ELISA), flow cytometry, and cellular imaging. This is the first study to quantitate the active antibody binding capacity of polysaccharide coated UCNP nanoparticles, offering a practical guideline for benchmarking functionalised UCNPs in future studies.


Assuntos
Nanopartículas , Anticorpos , Nanopartículas/química , Polissacarídeos
3.
Anal Chem ; 93(31): 10955-10965, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34323465

RESUMO

Water-in-oil-in-water (w/o/w) double emulsion (DE) encapsulation has been widely used as a promising platform technology for various applications in the fields of food, cosmetics, pharmacy, chemical engineering, materials science, and synthetic biology. Unfortunately, DEs formed by conventional emulsion generation approaches in most cases are highly polydisperse, making them less desirable for quantitative assays, controlled biomaterial synthesis, and entrapped ingredient release. Microfluidic devices can generate monodisperse DEs with controllable size, morphology, and production rate, but these generally require multistep fabrication processes and use of different solvents or bulky external instrumentation to pattern channel wettability. To overcome these limitations, we propose a rapid, simple, and inexpensive method to spatially pattern wettability in microfluidic devices for the continuous generation of monodisperse DEs. This is achieved by applying corona-plasma treatment to a select zone of the microchannel surface aided by a custom-designed corona resistance microchannel to strictly confine the plasma-treatment zone in a single polydimethylsiloxane (PDMS) microfluidic device. The properties of PDMS channel surfaces and key microchannel regions for DE generation are characterized under different levels of treatment. The size, shell thickness, and number of inner cores of generated DEs are shown to be highly controllable by tuning the phase flow rate ratios. Using DEs as templates, we successfully achieve a one-step generation and collection of gelatin microgels. Additionally, we demonstrate the biological capability of generated DEs by flow cytometric screening of the encapsulation and growth of yeast cells within DEs. We expect that the proposed approach will be widely used to create microfluidic devices with more complex wettability patterns.


Assuntos
Dispositivos Lab-On-A-Chip , Água , Emulsões , Citometria de Fluxo , Molhabilidade
4.
Biotechnol Bioeng ; 118(2): 647-658, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33022743

RESUMO

Yeast has been engineered for cost-effective organic acid production through metabolic engineering and synthetic biology techniques. However, cell growth assays in these processes were performed in bulk at the population level, thus obscuring the dynamics of rare single cells exhibiting beneficial traits. Here, we introduce the use of monodisperse picolitre droplets as bioreactors to cultivate yeast at the single-cell level. We investigated the effect of acid stress on growth and the effect of potassium ions on propionic acid tolerance for single yeast cells of different species, genotypes, and phenotypes. The results showed that the average growth of single yeast cells in microdroplets experiences the same trend to those of yeast populations grown in bulk, and microdroplet compartments do not significantly affect cell viability. This approach offers the prospect of detecting cell-to-cell variations in growth and physiology and is expected to be applied for the engineering of yeast to produce value-added bioproducts.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Engenharia Metabólica
5.
Nanoscale ; 12(39): 20347-20355, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33006350

RESUMO

Upconversion nanoparticles (UCNPs) exhibit unique optical properties such as photo-emission stability, large anti-Stokes shift, and long excited-state lifetimes, allowing significant advances in a broad range of applications from biomedical sensing to super-resolution microscopy. In recent years, progress on nanoparticle synthesis led to the development of many strategies for enhancing their upconversion luminescence, focused in particular on heavy doping of lanthanide ions and core-shell structures. In this article, we investigate the non-linear emission properties of fully Yb-based core-shell UCNPs and their impact on the super-resolution performance of stimulated excitation-depletion (STED) microscopy and super-linear excitation-emission (uSEE) microscopy. Controlling the power-dependent emission curve enables us to relax constraints on the doping concentrations and to reduce the excitation power required for accessing sub-diffraction regimes. We take advantage of this feature to implement multiplexed super-resolution imaging of a two-sample mixture.

6.
Nano Lett ; 20(12): 8487-8492, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-32936645

RESUMO

Lanthanide-based upconversion nanoparticles (UCNPs) generally require high power laser excitation. Here, we report wide-field upconversion microscopy at single-nanoparticle sensitivity using incoherent excitation of a 970 nm light-emitting diode (LED). We show that due to its broad emission spectrum, LED excitation is about 3 times less effective for UCNPs and generates high background compared to laser illumination. To counter this, we use time-gated luminescence detection to eliminate the residual background from the LED source, so that individual UCNPs with high sensitizer (Yb3+) doping and inert shell protection become clearly identified under LED excitation at 1.18 W cm-2, as confirmed by correlated electron microscopy images. Hydrophilic UCNPs are obtained by polysaccharide coating via a facile ligand exchange protocol to demonstrate imaging of cellular uptake using LED excitation. These results suggest a viable approach to bypassing the limitations associated with high-power lasers when applying UCNPs and upconversion microscopy to life science research.

7.
Opt Express ; 28(16): 24308-24326, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752412

RESUMO

Upconversion nanoparticles (UCNPs) are becoming increasingly popular as biological markers as they offer photo-stable imaging in the near-infrared (NIR) biological transparency window. Imaging at NIR wavelengths benefits from low auto-fluorescence background and minimal photo-damage. However, as the diffraction limit increases with the wavelength, the imaging resolution deteriorates. To address this limitation, recently two independent approaches have been proposed for imaging UCNPs with sub-diffraction resolution, namely stimulated emission-depletion (STED) microscopy and super linear excitation-emission (uSEE) microscopy. Both methods are very sensitive to the UCNP composition and the imaging conditions, i.e. to the excitation and depletion power. Here, we demonstrate that the imaging conditions can be chosen in a way that activates both super-resolution regimes simultaneously when imaging NaYF4:Yb,Tm UCNPs. The combined uSEE-STED mode benefits from the advantages of both techniques, allowing for imaging with lateral resolution about six times better than the diffraction limit due to STED and simultaneous improvement of the axial resolution about twice over the diffraction limit due to uSEE. Conveniently, at certain imaging conditions, the uSEE-STED modality can achieve better resolution at four times lower laser power compared to STED mode, making the method appealing for biological applications. We illustrate this by imaging UCNPs functionalized by colominic acid in fixed neuronal phenotype cells.

8.
Lab Chip ; 20(3): 655-664, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31934716

RESUMO

Time-resolved luminescence detection using long-lived probes with lifetimes in the microsecond region have shown great potential in ultrasensitive and multiplexed bioanalysis. In flow cytometry, however, the long lifetime poses a significant challenge to measure wherein the detection window is often too short to determine the decay characteristics. Here we report a time-resolved microfluidic flow cytometer (tr-mFCM) incorporating an acoustic-focusing chip, which allows slowing down of the flow while providing the same detection conditions for every target, achieving accurate lifetime measurement free of autofluorescence interference. Through configuration of the flow velocity and detection aperture with respect to the time-gating sequence, a multi-cycle luminescence decay profile is captured for every event under maximum excitation and detection efficiency. A custom fitting algorithm is then developed to resolve europium-stained polymer microspheres as well as leukemia cells against abundant fluorescent particles, achieving counting efficiency approaching 100% and lifetime CVs (coefficient of variation) around 2-6%. We further demonstrate lifetime-multiplexed detection of prostate and bladder cancer cells stained with different europium probes. Our acoustic-focusing tr-mFCM offers a practical technique for rapid screening of biofluidic samples containing multiple cell types, especially in resource-limited environments such as regional and/or underdeveloped areas as well as for point-of-care applications.


Assuntos
Citometria de Fluxo , Corantes Fluorescentes/química , Dispositivos Lab-On-A-Chip , Leucemia/diagnóstico por imagem , Algoritmos , Linhagem Celular Tumoral , Európio/química , Humanos , Microesferas , Polímeros/química , Fatores de Tempo
9.
ACS Sens ; 4(9): 2507-2514, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31436434

RESUMO

The sensitive and simultaneous detection of cytokines will provide new insights into the physiological process and disease pathways due to the complex nature of cytokine networks. However, the key challenge is the lack of probes that can simultaneously detect multiple cytokines in a single sample. In this contribution, we proposed an alternative approach for sensitive cytokine detection in a multiplex manner by the use of a new set of surface-enhanced Raman spectroscopy (SERS) nanotags. Typically, the newly designed SERS nanotags are composed of gold nanoparticles as the core, tuneable Raman molecules as the reporters, and a thin silver layer as the shell. As demonstrated through rigorous numerical simulations, enhanced Raman signal is achieved due to a strong localization of light in the 0.2 nm thin, optically deep-subwavelength region between the Au core and the Ag shell. Sensitive detection of cytokines is realized by forming a sandwich immunoassay. The detection limit is down to 4.5 pg mL-1 (S/N = 3). The specificity of the assay is proved as negligible signals were detected for the false targets. Furthermore, multiple cytokines are simultaneously detected in a single assay from the secretion of B-lymphocyte cell line (Raji) after concanavalin A (Con A) stimulation. The results indicate that our method holds a significant potential for sensitive and multiplexed detection of cytokines and offers the opportunity for future applications in clinical settings.


Assuntos
Citocinas/metabolismo , Limite de Detecção , Linfoma/metabolismo , Nanotecnologia/métodos , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Humanos , Linfoma/patologia
10.
Nat Commun ; 10(1): 3695, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31420541

RESUMO

Sub-diffraction microscopy enables bio-imaging with unprecedented clarity. However, most super-resolution methods require complex, costly purpose-built systems, involve image post-processing and struggle with sub-diffraction imaging in 3D. Here, we realize a conceptually different super-resolution approach which circumvents these limitations and enables 3D sub-diffraction imaging on conventional confocal microscopes. We refer to it as super-linear excitation-emission (SEE) microscopy, as it relies on markers with super-linear dependence of the emission on the excitation power. Super-linear markers proposed here are upconversion nanoparticles of NaYF4, doped with 20% Yb and unconventionally high 8% Tm, which are conveniently excited in the near-infrared biological window. We develop a computational framework calculating the 3D resolution for any viable scanning beam shape and excitation-emission probe profile. Imaging of colominic acid-coated upconversion nanoparticles endocytosed by neuronal cells, at resolutions twice better than the diffraction limit both in lateral and axial directions, illustrates the applicability of SEE microscopy for sub-cellular biology.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Nanopartículas/ultraestrutura , Neurônios/ultraestrutura , Animais , Endocitose , Células PC12 , Ratos
11.
Molecules ; 24(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159269

RESUMO

We describe simple direct conjugation of a single TEGylated Europium chelate to DNA that binds to intracellular rRNA and is then detected using a homogeneous luminescent in situ hybridisation (LISH) technique. As a proof-of-principle, Staphylococcus aureus (S. aureus) was selected as a model for our study to show the ability of this probe to bind to intracellular 16S ribosomal rRNA. A highly purified Europium chelate conjugated oligonucleotide probe complementary to an rRNA sequence-specific S. aureus was prepared and found to be soluble and stable in aqueous solution. The probe was able to bind specifically to S. aureus via in situ hybridisation to differentiate S. aureus from a closely related but less pathogenic Staphylococcus species (S. epidermidis). A time-gated luminescent (TGL) microscope system was used to generate the high signal-to-noise ratio (SNR) images of the S. aureus. After excitation (365 nm, Chelate λmax = 335 nm), the long-lived (Eu3+) luminescent emission from the probe was detected without interference from natural background autofluorescence typically seen in biological samples. The luminescent images were found to have 6 times higher SNR or sensitivity compared to the fluorescent images using conventional fluorophore Alexa Fluor 488. The TEGylated Europium chelate -oligo probe stained S. aureus with mean signal intensity 3.5 times higher than the threshold level of signal from S. epidermidis (with SNR 8 times higher). A positive control probe (EUB338-BHHTEGST-Eu3+) has mean signal intensity for S. aureus and S. epidermidis equally 3.2 times higher than the threshold of signal for a negative NON-EUB338 control probe. The direct conjugation of a single Europium chelate to DNA provides simplicity and improvement over existing bovine serum albumin (BSA)/streptavidin/biotinylated DNA platforms for multi-attachment of Europium chelate per DNA and more importantly makes it feasible for hybridisation to intracellular RNA targets. This probe has great potential for highly sensitive homogeneous in situ hybridisation detection of the vast range of intracellular DNA targets.


Assuntos
Hibridização In Situ , Luminescência , Medições Luminescentes , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Cromatografia Líquida de Alta Pressão , Humanos , Hibridização In Situ/métodos , Medições Luminescentes/métodos , RNA Ribossômico 16S
12.
Nat Nanotechnol ; 13(10): 941-946, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30082923

RESUMO

Deep tissue imaging in the second near-infrared (NIR-II) window holds great promise for physiological studies and biomedical applications1-6. However, inhomogeneous signal attenuation in biological matter7,8 hampers the application of multiple-wavelength NIR-II probes to multiplexed imaging. Here, we present lanthanide-doped NIR-II nanoparticles with engineered luminescence lifetimes for in vivo quantitative imaging using time-domain multiplexing. To achieve this, we have devised a systematic approach based on controlled energy relay that creates a tunable lifetime range spanning three orders of magnitude with a single emission band. We consistently resolve selected lifetimes from the NIR-II nanoparticle probes at depths of up to 8 mm in biological tissues, where the signal-to-noise ratio derived from intensity measurements drops below 1.5. We demonstrate that robust lifetime coding is independent of tissue penetration depth, and we apply in vivo multiplexing to identify tumour subtypes in living mice. Our results correlate well with standard ex vivo immunohistochemistry assays, suggesting that luminescence lifetime imaging could be used as a minimally invasive approach for disease diagnosis.


Assuntos
Imunoconjugados/química , Elementos da Série dos Lantanídeos/química , Substâncias Luminescentes/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Luminescência , Medições Luminescentes/métodos , Camundongos Endogâmicos BALB C , Camundongos Nus , Espectroscopia de Luz Próxima ao Infravermelho
13.
Nature ; 543(7644): 229-233, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28225761

RESUMO

Lanthanide-doped glasses and crystals are attractive for laser applications because the metastable energy levels of the trivalent lanthanide ions facilitate the establishment of population inversion and amplified stimulated emission at relatively low pump power. At the nanometre scale, lanthanide-doped upconversion nanoparticles (UCNPs) can now be made with precisely controlled phase, dimension and doping level. When excited in the near-infrared, these UCNPs emit stable, bright visible luminescence at a variety of selectable wavelengths, with single-nanoparticle sensitivity, which makes them suitable for advanced luminescence microscopy applications. Here we show that UCNPs doped with high concentrations of thulium ions (Tm3+), excited at a wavelength of 980 nanometres, can readily establish a population inversion on their intermediate metastable 3H4 level: the reduced inter-emitter distance at high Tm3+ doping concentration leads to intense cross-relaxation, inducing a photon-avalanche-like effect that rapidly populates the metastable 3H4 level, resulting in population inversion relative to the 3H6 ground level within a single nanoparticle. As a result, illumination by a laser at 808 nanometres, matching the upconversion band of the 3H4 → 3H6 transition, can trigger amplified stimulated emission to discharge the 3H4 intermediate level, so that the upconversion pathway to generate blue luminescence can be optically inhibited. We harness these properties to realize low-power super-resolution stimulated emission depletion (STED) microscopy and achieve nanometre-scale optical resolution (nanoscopy), imaging single UCNPs; the resolution is 28 nanometres, that is, 1/36th of the wavelength. These engineered nanocrystals offer saturation intensity two orders of magnitude lower than those of fluorescent probes currently employed in stimulated emission depletion microscopy, suggesting a new way of alleviating the square-root law that typically limits the resolution that can be practically achieved by such techniques.

14.
Anal Chem ; 88(19): 9564-9571, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27595303

RESUMO

We describe the application of a synthetically developed tetradentate ß-diketonate-europium chelate with high quantum yield (39%), for sensitive immunodetection of prostate cancer cells (DU145). MIL38 antibody, a mouse monoclonal antibody against Glypican 1, conjugated directly to the chelate via lysine residues, resulted in soluble (hydrophilic) and stable immunoconjugates. Indirect labeling of the antibody by a europium chelated secondary polyclonal antibody and a streptavidin/biotin pair was also performed. All of these bright luminescent conjugates were used to stain DU145 cells, a prostate cancer cell line, using time gated luminescence microscopy for imaging, and their performances were compared to conventional FITC labeling. For all prepared conjugates, the europium chelate in conjunction with a gated autosynchronous luminescence detector (GALD) completely suppressed the cellular autofluorescence background to allow capture of vivid, high contrast images of immune-stained cancer cells.


Assuntos
Complexos de Coordenação/farmacologia , Európio/química , Imunoconjugados/farmacologia , Técnicas Imunológicas/métodos , Substâncias Luminescentes/farmacologia , Neoplasias da Próstata/diagnóstico , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Glipicanas/imunologia , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Ligantes , Luminescência , Substâncias Luminescentes/síntese química , Masculino
15.
Nat Commun ; 7: 10254, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743184

RESUMO

The ultimate frontier in nanomaterials engineering is to realize their composition control with atomic scale precision to enable fabrication of nanoparticles with desirable size, shape and surface properties. Such control becomes even more useful when growing hybrid nanocrystals designed to integrate multiple functionalities. Here we report achieving such degree of control in a family of rare-earth-doped nanomaterials. We experimentally verify the co-existence and different roles of oleate anions (OA(-)) and molecules (OAH) in the crystal formation. We identify that the control over the ratio of OA(-) to OAH can be used to directionally inhibit, promote or etch the crystallographic facets of the nanoparticles. This control enables selective grafting of shells with complex morphologies grown over nanocrystal cores, thus allowing the fabrication of a diverse library of monodisperse sub-50 nm nanoparticles. With such programmable additive and subtractive engineering a variety of three-dimensional shapes can be implemented using a bottom-up scalable approach.

16.
Anal Chem ; 88(2): 1312-9, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26669618

RESUMO

Compared with routine microscopy imaging of a few analytes at a time, rapid scanning through the whole sample area of a microscope slide to locate every single target object offers many advantages in terms of simplicity, speed, throughput, and potential for robust quantitative analysis. Existing techniques that accommodate solid-phase samples incorporating individual micrometer-sized targets generally rely on digital microscopy and image analysis, with intrinsically low throughput and reliability. Here, we report an advanced on-the-fly stage scanning method to achieve high-precision target location across the whole slide. By integrating X- and Y-axis linear encoders to a motorized stage as the virtual "grids" that provide real-time positional references, we demonstrate an orthogonal scanning automated microscopy (OSAM) technique which can search a coverslip area of 50 × 24 mm(2) in just 5.3 min and locate individual 15 µm lanthanide luminescent microspheres with standard deviations of 1.38 and 1.75 µm in X and Y directions. Alongside implementation of an autofocus unit that compensates the tilt of a slide in the Z-axis in real time, we increase the luminescence detection efficiency by 35% with an improved coefficient of variation. We demonstrate the capability of advanced OSAM for robust quantification of luminescence intensities and lifetimes for a variety of micrometer-scale luminescent targets, specifically single down-shifting and upconversion microspheres, crystalline microplates, and color-barcoded microrods, as well as quantitative suspension array assays of biotinylated-DNA functionalized upconversion nanoparticles.

17.
Sci Rep ; 4: 6597, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25307702

RESUMO

Time-gated luminescence microscopy using long-lifetime molecular probes can effectively eliminate autofluorescence to enable high contrast imaging. Here we investigate a new strategy of time-gated imaging for simultaneous visualisation of multiple species of microorganisms stained with long-lived complexes under low-background conditions. This is realized by imaging two pathogenic organisms (Giardia lamblia stained with a red europium probe and Cryptosporidium parvum with a green terbium probe) at UV wavelengths (320-400 nm) through synchronization of a flash lamp with high repetition rate (1 kHz) to a robust time-gating detection unit. This approach provides four times enhancement in signal-to-background ratio over non-time-gated imaging, while the average signal intensity also increases six-fold compared with that under UV LED excitation. The high sensitivity is further confirmed by imaging the single europium-doped Y2O2S nanocrystals (150 nm). We report technical details regarding the time-gating detection unit and demonstrate its compatibility with commercial epi-fluorescence microscopes, providing a valuable and convenient addition to standard laboratory equipment.


Assuntos
Cryptosporidium parvum/ultraestrutura , Microscopia de Fluorescência/métodos , Microscopia/métodos , Imagem Molecular , Európio/química , Medições Luminescentes
18.
Opt Lett ; 39(13): 4037-40, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24978801

RESUMO

We report a pulsed mid-infrared diamond Raman laser with output tuned from 3.38 to 3.80 µm through varying the optical parametric oscillator (OPO) pump wavelength. To our knowledge this is the longest reported wavelength from a solid-state Raman laser. We generated up to 80 µJ with good beam quality and 22% quantum conversion efficiency. Whilst the conversion process itself is efficient, approximately 40% of the generated Stokes light is lost to multiphonon absorption. By introducing a secondary pump beam at the anti-Stokes wavelength to initiate a seed at the Stokes wavelength through Raman resonant four-wave mixing, the laser threshold was reduced by approximately half, and the maximum output increased by 44% to 115 µJ.

19.
Nat Commun ; 5: 3741, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24796249

RESUMO

Significant multiplexing capacity of optical time-domain coding has been recently demonstrated by tuning luminescence lifetimes of the upconversion nanoparticles called 'τ-Dots'. It provides a large dynamic range of lifetimes from microseconds to milliseconds, which allows creating large libraries of nanotags/microcarriers. However, a robust approach is required to rapidly and accurately measure the luminescence lifetimes from the relatively slow-decaying signals. Here we show a fast algorithm suitable for the microsecond region with precision closely approaching the theoretical limit and compatible with the rapid scanning cytometry technique. We exploit this approach to further extend optical time-domain multiplexing to the downconversion luminescence, using luminescence microspheres wherein lifetimes are tuned through luminescence resonance energy transfer. We demonstrate real-time discrimination of these microspheres in the rapid scanning cytometry, and apply them to the multiplexed probing of pathogen DNA strands. Our results indicate that tunable luminescence lifetimes have considerable potential in high-throughput analytical sciences.


Assuntos
Elementos da Série dos Lantanídeos/química , Algoritmos , Luminescência
20.
Nat Nanotechnol ; 8(10): 729-34, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23995455

RESUMO

Upconversion nanocrystals convert infrared radiation to visible luminescence, and are promising for applications in biodetection, bioimaging, solar cells and three-dimensional display technologies. Although the design of suitable nanocrystals has improved the performance of upconversion nanocrystals, their emission brightness is limited by the low doping concentration of activator ions needed to avoid the luminescence quenching that occurs at high concentrations. Here, we demonstrate that high excitation irradiance can alleviate concentration quenching in upconversion luminescence when combined with higher activator concentration, which can be increased from 0.5 mol% to 8 mol% Tm(3+) in NaYF4. This leads to significantly enhanced luminescence signals, by up to a factor of 70. By using such bright nanocrystals, we demonstrate remote tracking of a single nanocrystal with a microstructured optical-fibre dip sensor. This represents a sensitivity improvement of three orders of magnitude over benchmark nanocrystals such as quantum dots.


Assuntos
Luminescência , Nanopartículas/química , Nanotecnologia/métodos , Técnicas Biossensoriais , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Ítrio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...