Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Biomolecules ; 12(8)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892339

RESUMO

The folding of the myosin head often requires a UCS (Unc45, Cro1, She4) domain-containing chaperone. Worms, flies, and fungi have just a single UCS protein. Vertebrates have two; one (Unc45A) which functions primarily in non-muscle cells and another (Unc45B) that is essential for establishing and maintaining the contractile apparatus of cardiac and skeletal muscles. The domain structure of these proteins suggests that the UCS function evolved before animals and fungi diverged from a common ancestor more than a billion years ago. UCS proteins of metazoans and apicomplexan parasites possess a tetratricopeptide repeat (TPR), a domain for direct binding of the Hsp70/Hsp90 chaperones. This, however, is absent in the UCS proteins of fungi and largely nonessential for the UCS protein function in Caenorhabditis elegans and zebrafish. The latter part of this review focusses on the TPR-deficient UCS proteins of fungi. While these are reasonably well studied in yeasts, there is little precise information as to how they might engage in interactions with the Hsp70/Hsp90 chaperones or might assist in myosin operations during the hyphal growth of filamentous fungi.


Assuntos
Chaperonas Moleculares , Peixe-Zebra , Animais , Caenorhabditis elegans/metabolismo , Fungos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Miosinas/metabolismo , Ligação Proteica , Peixe-Zebra/metabolismo
2.
Cell Stress Chaperones ; 27(3): 295-304, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35420390

RESUMO

In yeast, the Slt2(Mpk1) stress-activated protein kinase directs the activation of two transcription factors, Rlm1 and Swi4/Swi6, in response to cell wall stress. Rlm1 is activated through a phosphorylation by Slt2, whereas the Swi4/Swi6 activation is noncatalytic and triggered by the binding of phosphorylated forms of both Slt2 and a catalytically inactive pseudokinase (Mlp1). Previous studies have delineated a role for the molecular chaperone Hsp90 in the activation of Slt2, but the involvement of Hsp90 in these events of catalytic versus non-catalytic cell integrity signaling has remained elusive. In cells lacking Mlp1, the Hsp90 inhibitor radicicol was found to inhibit the Slt2-mediated catalytic activation of Rlm1, but not the noncatalytic activation of Swi4/Swi6. Mutation of residues in the TEY motif of the Slt2 activation loop strongly impacted both Hsp90 binding and Rlm1-mediated transcription. In contrast, many of these same mutations had only modest effects on Swi4/6 (Slt2-mediated, non-catalytic) transcription, although one that blocked both the Slt2:Hsp90 interaction and Rlm1-mediated transcription (E191G) triggered a hyperactivation of Swi4/6. Taken together, our results cement the importance of the Slt2 activation loop for both the binding of Hsp90 by Slt2 and the catalytic activation of cell integrity signaling.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas Quinases Ativadas por Mitógeno , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
3.
Cell Stress Chaperones ; 23(4): 609-615, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29288355

RESUMO

A dedicated UNC45, Cro1, She4 (UCS) domain-containing protein assists in the Hsp90-mediated folding of the myosin head. Only weak sequence conservation exists between the single UCS protein of simple eukaryotes (She4 in budding yeast) and the two UCS proteins of higher organisms (the general cell and striated muscle UNC45s; UNC45-GC and UNC45-SM, respectively). In vertebrates, UNC45-GC facilitates cytoskeletal functions, whereas the 55% identical UNC45-SM assists assembly of the contractile apparatus of cardiac and skeletal muscles. A Saccharomyces cerevisiae she4Δ mutant, totally lacking any UCS protein, was engineered to express as its sole Hsp90 either the Hsp90α or the Hsp90ß isoforms of human cytosolic Hsp90. A transient induction of the human UNC45-GC, but not UNC45-SM, could rescue the defective endocytosis in these she4Δ cells at 39 °C, irrespective of whether they possessed Hsp90α or Hsp90ß. UNC45-GC-mediated rescue of the localisation of a Myo5-green fluorescent protein (GFP) fusion to cortical patches at 39 °C was more efficient in the yeast containing Hsp90α, though this may relate to more efficient functioning of Hsp90α as compared to Hsp90ß in these strains. Furthermore, inducible expression of UNC45-GC, but not UNC45-SM, could partially rescue survival at a more extreme temperature (45 °C) that normally causes she4Δ mutant yeast cells to lyse. The results indicate that UCS protein function has been most conserved-yeast to man-in the UNC45-GC, not UNC45-SM. This may reflect UNC45-GC being the vertebrate UCS protein that assists formation of the actomyosin complexes needed for cytokinesis, cell morphological change, and organelle trafficking-events also facilitated by the myosins in yeast.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Chaperonas Moleculares/metabolismo , Mutação/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas do Citoesqueleto/genética , Citosol/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Temperatura Alta , Humanos , Viabilidade Microbiana , Chaperonas Moleculares/genética , Miosinas/metabolismo , Fenótipo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
4.
Compr Rev Food Sci Food Saf ; 16(5): 868-880, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33371618

RESUMO

Sodium benzoate and potassium sorbate are extremely useful agents for food and beverage preservation, yet concerns remain over their complete safety. Benzoate can react with the ascorbic acid in drinks to produce the carcinogen benzene. A few children develop allergy to this additive while, as a competitive inhibitor of D-amino acid oxidase, benzoate can also influence neurotransmission and cognitive functioning. Model organism and cell culture studies have raised some issues. Benzoate has been found to exert teratogenic and neurotoxic effects on zebrafish embryos. In addition, benzoate and sorbate are reported to cause chromosome aberrations in cultured human lymphocytes; also to be potently mutagenic toward the mitochondrial DNA in aerobic yeast cells. Whether the substantial human consumption of these compounds could significantly increase levels of such damages in man is still unclear. There is no firm evidence that it is a risk factor in type 2 diabetes. The clinical administration of sodium benzoate is of proven benefit for many patients with urea cycle disorders, while recent studies indicate it may also be advantageous in the treatment of multiple sclerosis, schizophrenia, early-stage Alzheimer's disease and Parkinson's disease. Nevertheless, exposure to high amounts of this agent should be approached with caution, especially since it has the potential to generate a shortage of glycine which, in turn, can negatively influence brain neurochemistry. We discuss here how a small fraction of the population might be rendered-either through their genes or a chronic medical condition-particularly susceptible to any adverse effects of sodium benzoate.

5.
Cell Stress Chaperones ; 22(1): 135-141, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27888470

RESUMO

Folding of the myosin head often requires the joint actions of Hsp90 and a dedicated UNC45, Cro1, She4 (UCS) domain-containing cochaperone protein. Relatively weak sequence conservation exists between the single UCS protein of simple eukaryotes (She4 in budding yeast) and the two UCS proteins of higher organisms (the general cell and smooth muscle UNC45s; UNC45-GC and UNC45-SM respectively). In vertebrates, UNC45-GC facilitates cytoskeletal function whereas the 55% identical UNC45-SM assists in the assembly of the contractile apparatus of cardiac and skeletal muscles. UNC45-SM, unlike UNC45-GC, shares with yeast She4 an IDSL sequence motif known to be a site of in vivo serine phosphorylation in yeast. Investigating this further, we found that both a non-phosphorylatable (S18A) and a phosphomimetic (S18E) mutant form of She4 could rescue the type 1 myosin localisation and endocytosis defects of the yeast she4Δ mutant at 39 °C. Nevertheless, at higher temperature (45 °C), only She4 (S18A), not She4(S18E), could substantially rescue the cell lysis defect of she4Δ mutant cells. In the yeast two-hybrid system, the non-phosphorylatable S18A and S251A mutant forms of She4 and UNC45-SM still displayed the stress-enhanced in vivo interaction with Hsp90 seen with the wild-type She4 and UNC45-SM. Such high-temperature enforcement to interaction was though lost with the phosphomimetic mutant forms (She4(S18E) and UNC45-SM (S251E)), an indication that phosphorylation might suppress these increases in She4/Hsp90 and UNC45-SM/Hsp90 interaction with stress.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Endocitose , Proteínas de Choque Térmico HSP90/metabolismo , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Miosina Tipo I/metabolismo , Fenótipo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Técnicas do Sistema de Duplo-Híbrido
6.
FEMS Yeast Res ; 14(7): 1006-14, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25065265

RESUMO

Mentha piperita (MP), also known as peppermint, is an aromatic and medicinal plant widely used in the food industry, perfumery and cosmetic, pharmacy and traditional medicine. Its essential oil (EO) displays antimicrobial activity against a range of bacteria and fungi. In this study, we found that MP EO lethal cytotoxicity is associated with increased levels of intracellular reactive oxygen species, mitochondrial fragmentation and chromatin condensation, without loss of the plasma membrane integrity, indicative of an apoptotic process. Overexpression of cytosolic catalase and superoxide dismutases reverted the lethal effects of the EO and of its major component menthol. Conversely, deficiency in Sod1p (cytosolic copper-zinc-superoxide dismutase) greatly increased sensitivity to both agents, but deficiency in Sod2p (mitochondrial manganese superoxide dismutase) only induced sensitivity under respiratory growth conditions. Mentha piperita EO increased the frequency of respiratory deficient mutants indicative of damage to the mitochondrial genome, although increase in mitochondrial thiol oxidation does not seem to be involved in the EO toxicity.


Assuntos
Antifúngicos/farmacologia , Apoptose , Mentha piperita/química , Óleos Voláteis/farmacologia , Espécies Reativas de Oxigênio/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia
7.
Oncotarget ; 5(13): 5054-64, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24970820

RESUMO

UNLABELLED: In human cells TORC1 mTOR (target of rapamycin) protein kinase complex renders heat shock transcription factor 1 (Hsf1) competent for stress activation. In such cells, as well as in yeast, the selective TORC1 inhibitor rapamycin blocks this activation in contrast to Hsp90 inhibitors which potently activate Hsf1. Potentially therefore rapamycin could prevent the Hsf1 activation that frequently compromises the efficiency of Hsp90 inhibitor cancer drugs. Little synergy was found between the effects of rapamycin and the Hsp90 inhibitor radicicol on yeast growth. However certain rapamycin resistance mutations sensitised yeast to Hsp90 inhibitor treatment and an Hsp90 mutation that overactivates Hsf1 sensitised cells to rapamycin. Rapamycin inhibition of the yeast Hsf1 was abolished by this Hsp90 mutation, as well as with the loss of Ppt1, the Hsp90-interacting protein phosphatase that is the ortholog of mammalian PP5. Unexpectedly Hsf1 activation was found to have a requirement for the rapamycin binding immunophilin FKBP12 even in the absence of rapamycin, while TORC1 "bypass" strains revealed that the rapamycin inhibition of yeast Hsf1 is not exerted through two of the major downstream targets of TORC1, the protein phosphatase regulator Tap42 and the protein kinase Sch9--the latter the ortholog of human S6 protein kinase 1. SIGNIFICANCE: A problem with most of the Hsp90 inhibitor drugs now in cancer clinic trials is that they potently activate Hsf1. This leads to an induction of heat shock proteins, many of which have a "pro-survival" role in that they help to protect cells from apopotosis. As the activation of Hsf1 requires TORC1, inhibitors of mTOR kinase could potentially block this activation of Hsf1 and be of value when used in combination drug therapies with Hsp90 inhibitors. However many of the mechanistic details of the TORC1 regulation of Hsf1, as well as the interplay between cellular resistances to rapamycin and to Hsp90 inhibitors, still remain to be resolved.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico/antagonistas & inibidores , Macrolídeos/farmacologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Sirolimo/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Antifúngicos/farmacologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mutação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Cell Stress Chaperones ; 19(5): 695-703, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24452458

RESUMO

In most eukaryotes, Cdc37 is an essential chaperone, transiently associating with newly synthesised protein kinases in order to promote their stabilisation and activation. To determine whether the yeast Cdc37 participates in any stable protein interactions in vivo, genomic two-hybrid screens were conducted using baits that are functional as they preserve the integrity of the conserved N-terminal region of Cdc37, namely a Cdc37-Gal4 DNA binding domain (BD) fusion in both its wild type and its S14 nonphosphorylatable (Cdc37(S14A)) mutant forms. While this failed to identify the protein kinases previously identified as Cdc37 interactors in pull-down experiments, it did reveal Cdc37 engaging in a stable association with the most atypical member of the yeast kinome, cyclin-dependent kinase (Cdk1)-activating kinase (Cak1). Phosphorylation of the conserved S14 of Cdc37 is normally crucial for the interaction with, and stabilisation of, those protein kinase targets of Cdc37, Cak1 is unusual in that the lack of this Cdc37 S14 phosphorylation both reinforces Cak1:Cdc37 interaction and does not compromise Cak1 expression in vivo. Thus, this is the first Cdc37 client kinase found to be excluded from S14 phosphorylation-dependent interaction. The unusual stability of this Cak1:Cdc37 association may partly reflect unique structural features of the fungal Cak1.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Genótipo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Quinase Ativadora de Quinase Dependente de Ciclina
9.
Open Biol ; 2(12): 120138, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23271830

RESUMO

Heat shock protein 90 (Hsp90) is a promising cancer drug target as a molecular chaperone critical for stabilization and activation of several of the oncoproteins that drive cancer progression. Its actions depend upon its essential ATPase, an activity fortuitously inhibited with a very high degree of selectivity by natural antibiotics: notably the actinomycete-derived benzoquinone ansamycins (e.g. geldanamycin) and certain fungal-derived resorcyclic acid lactones (e.g. radicicol). The molecular interactions made by these antibiotics when bound within the ADP/ATP-binding site of Hsp90 have served as templates for the development of several synthetic Hsp90 inhibitor drugs. Much attention now focuses on the clinical trials of these drugs. However, because microbes have evolved antibiotics to target Hsp90, it is probable that they often exploit Hsp90 inhibition when interacting with each other and with plants. Fungi known to produce Hsp90 inhibitors include mycoparasitic, as well as plant-pathogenic, endophytic and mycorrhizal species. The Hsp90 chaperone may, therefore, be a prominent target in establishing a number of mycoparasitic (interfungal), fungal pathogen-plant and symbiotic fungus-plant relationships. Furthermore the Hsp90 family proteins of the microbes that produce Hsp90 inhibitor antibiotics are able to reveal how drug resistance can arise by amino acid changes in the highly conserved ADP/ATP-binding site of Hsp90.


Assuntos
Antibacterianos/metabolismo , Bactérias/metabolismo , Fungos/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Benzoquinonas/química , Benzoquinonas/metabolismo , Benzoquinonas/farmacologia , Sítios de Ligação , Ensaios Clínicos como Assunto , Resistência a Medicamentos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Humanos , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/metabolismo , Lactamas Macrocíclicas/farmacologia , Macrolídeos/química , Macrolídeos/metabolismo , Macrolídeos/farmacologia , Modelos Moleculares , Ligação Proteica
10.
Subcell Biochem ; 57: 145-59, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22094421

RESUMO

When investigating aging it is important to focus on the factors that are needed to attain, and which can be manipulated to extend, the longest lifespans. This has long been appreciated by those workers who use Drosophila or Caenorhabditis elegans as model experimental systems to study aging. Often though it seems it is not a consideration in many studies of yeast chronological aging. In this chapter I summarise how recent work has revealed the preconditioning that is needed for yeast to survive for long periods in stationary phase, therefore for it to exhibit a long chronological life span (CLS). Of critical importance in this regard is the nature of the nutrient limitation that, during the earlier growth phase, had forced the cells to undergo growth arrest. I have attempted to highlight those studies that have focussed on the longest CLSs, as this helps to identify investigations that may be addressing - not just factors that can influence chronological longevity - but those factors that are correlated with the authentic processes of chronological aging. Attempting to maximize long-term stationary survival in yeast should also enhance the potential relevance of this organism as an aging model to those who wrestle with the problems of aging in more complex systems. Finally I also give a personal perspective of how studies on the yeast CLS may still yet provide some important new insights into events that are correlated with aging.


Assuntos
Envelhecimento/fisiologia , Divisão Celular , Saccharomyces cerevisiae/crescimento & desenvolvimento , Envelhecimento/genética , Envelhecimento/metabolismo , Metabolismo Energético , Regulação Fúngica da Expressão Gênica , Longevidade , Viabilidade Microbiana , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação , Estresse Oxidativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Tempo
11.
Yeast ; 29(1): 39-44, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22113732

RESUMO

Saccharomyces cerevisiae acquires its resistance to carboxylate weak organic acids by inducing a plasma membrane ABC transporter, Pdr12. These acids activate a Zn(II)2Cys6 zinc-finger transcription factor, War1, which in turn induces the PDR12 gene. Mutation of the four potential sites of serine/threonine phosphorylation within the War1 activation domain revealed that Pdr12 induction was lost with mutations S923A or S930A, but not with the corresponding phosphomimetic mutations S923D or S930D. However, phosphorylation at these two sites has not been detected by mass spectrometry, so it still remains uncertain whether these are true sites of phosphorylation or merely serines whose side-chain hydroxyls are necessary for the proper structuring of the War1 activation domain. Mutation S923A prevented the sorbate-induced hyperphosphorylation of War1, while S930A caused War1 to be in a constitutively hyperphosphorylated state, irrespective of weak acid stress. Screening of non-essential protein kinase mutants of yeast failed to identify a kinase required for Pdr12 induction, or War1 hyperphosphorylation, in response to sorbate treatment. However, the mrk1∆ mutant was identified as having an elevated Pdr12 level in the absence of sorbate stress.


Assuntos
Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Motivos de Aminoácidos , Regulação Fúngica da Expressão Gênica , Fosforilação , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Dedos de Zinco
12.
Adv Appl Microbiol ; 77: 97-113, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22050823

RESUMO

Carboxylate weak acids are invaluable for large-scale food and beverage preservation. However, in response to safety concerns, there is now desire to reduce the use of these additives. The resistance to these compounds displayed by spoilage yeasts and fungi is a major reason why these preservatives often have to be used in millimolar levels. This chapter summarizes the mechanisms whereby yeasts are rendered resistant to acetate, propionate, sorbate, and benzoate. In baker's yeast (Saccharomyces cerevisiae), resistance to high acetic acid is acquired partly by loss of the plasma membrane aquaglyceroporin that facilitates the passive diffusional entry of undissociated acid into cells (Fps1), and partly through a transcriptional response mediated by the transcription factor Haa1. Other carboxylate preservatives are too large to enter cells through the Fps1 channel but instead penetrate at appreciable rates by passive diffusion across the plasma membrane. In Saccharomyces and Candida albicans though not, it seems, in the Zygosaccharomyces, resistance to the latter acids involves activation of the War1 transcription factor, which in turn generates strong induction of a specific plasma membrane ATP-binding cassette transporter (Pdr12). The latter actively pumps the preservative anion from the cell. Other contributors to weak acid resistance include enzymes that allow preservative degradation, members of the Tpo family of major facilitator superfamily transporters, and changes to the cell envelope that minimize the diffusional entry of the preservative into the cell.


Assuntos
Conservantes de Alimentos , Proteínas de Saccharomyces cerevisiae , Ácidos/metabolismo , Farmacorresistência Fúngica , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae , Ácido Sórbico , Zygosaccharomyces
13.
FASEB J ; 25(11): 3828-37, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21778327

RESUMO

Much attention is focused on the benzoquinone ansamycins as anticancer agents, with several derivatives of the natural product geldanamycin (GdA) now in clinical trials. These drugs are selective inhibitors of Hsp90, a molecular chaperone vital for many of the activities that drive cancer progression. Mutational changes to their interaction site, the extremely conserved ATP binding site of Hsp90, would mostly be predicted to inactivate the chaperone. As a result, drug resistance should not arise readily this way. Nevertheless, Streptomyces hygroscopicus, the actinomycete that produces GdA, has evolved an Hsp90 family protein (HtpG) that lacks GdA binding. It is altered in certain of the highly conserved amino acids making contacts to this antibiotic in crystal structures of GdA bound to eukaryotic forms of Hsp90. Two of these amino acid changes, located on one side of the nucleotide-binding cleft, weakened GdA/Hsp90 binding and conferred partial GdA resistance when inserted into the endogenous Hsp90 of yeast cells. Crystal structures revealed their main effect to be a weakening of interactions with the C-12 methoxy group of the GdA ansamycin ring. This is the first study to demonstrate that partial GdA resistance is possible by mutation within the ATP binding pocket of Hsp90.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzoquinonas/metabolismo , Proteínas de Choque Térmico HSP90/genética , Lactamas Macrocíclicas/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Benzoquinonas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSP90/metabolismo , Lactamas Macrocíclicas/farmacologia , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Mol Cell ; 41(6): 672-81, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21419342

RESUMO

Heat shock protein 90 (Hsp90) is an essential molecular chaperone whose activity is regulated not only by cochaperones but also by distinct posttranslational modifications. We report here that casein kinase 2 phosphorylates a conserved threonine residue (T22) in α helix-1 of the yeast Hsp90 N-domain both in vitro and in vivo. This α helix participates in a hydrophobic interaction with the catalytic loop in Hsp90's middle domain, helping to stabilize the chaperone's ATPase-competent state. Phosphomimetic mutation of this residue alters Hsp90 ATPase activity and chaperone function and impacts interaction with the cochaperones Aha1 and Cdc37. Overexpression of Aha1 stimulates the ATPase activity, restores cochaperone interactions, and compensates for the functional defects of these Hsp90 mutants.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Treonina/metabolismo , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/química , Chaperoninas/genética , Chaperoninas/metabolismo , Proteínas Fúngicas/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Chaperonas Moleculares/genética , Fosforilação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Pharmaceuticals (Basel) ; 4(11): 1400-1422, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27721330

RESUMO

The molecular chaperone Hsp90 holds great promise as a cancer drug target, despite some of the initial clinical trials of Hsp90 inhibitor drugs having not lived up to expectation. Effective use of these drugs will benefit greatly from a much more detailed understanding of the factors that contribute to resistance, whether intrinsic or acquired. We review how cell culture studies have revealed a number of different mechanisms whereby cells can be rendered less susceptible to the effects of Hsp90 inhibitor treatment. A major influence is Hsp90 inhibition causing strong induction of the heat shock response, a stress response that increases cellular levels of prosurvival chaperones such as Hsp27 and Hsp70. Another problem seems to be that these inhibitors do not always access the Hsp90 proteins of the mitochondrion, forms of Hsp90 that-in cancer cells-are operating to suppress apoptosis. It should be possible to overcome these drawbacks through the appropriate drug redesign or with the combinatorial use of an Hsp90 inhibitor with a drug that targets either heat shock factor or the chaperone Hsp70. Still though, cells will often differ in the key antiapoptotic versus proapoptotic activities that are dependent on Hsp90, in the key steps in their apoptotic pathways responsive to Hsp90 inhibition or Hsp70 level, as well as the extents to which their survival is dependent on oncogenic tyrosine kinases that are clients of Hsp90. A systems approach will therefore often be required in order to establish the most prominent effects of Hsp90 inhibition in each type of cancer cell.

17.
FEMS Yeast Res ; 10(5): 527-34, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20491941

RESUMO

Saccharomyces cerevisiae acquires a resistance to high, toxic levels of acetic acid by destabilizing Fps1p, the plasma membrane aquaglyceroporin through which this acid - in its undissociated state - enters the cell. In this study, Fps1p loss was shown to confer resistances to acetic acid, acrolein and allyl alcohol, not just in S. cerevisiae but also in the osmotolerant spoilage yeast Zygosaccharomyces rouxii. However, in Z. rouxii, the loss of Fps1p severely compromised the use of acetamide and several other small amides as sources of nitrogen, an indication that these amides enter the cells of this yeast by passive diffusion through the Fps1p pore. Saccharomyces cerevisiae cannot grow on acetamide, but was conferred with an ability to use this and other small amides as nitrogen sources by heterologous expression of a Z. rouxii ORF (ZrAMD1) with protein sequence identity to the amdS-encoded amidase of Aspergillus nidulans. This capacity of ZrAMD1-expressing S. cerevisiae to assimilate amide nitrogen was severely compromised by the loss of Fps1p. ZrAMD1 appears to encode the major amidase of Z. rouxii as a Zramd1Delta deletant mutant had, like the Zrfps1Delta deletant, lost the ability to assimilate small amides as sources of nitrogen.


Assuntos
Amidas/metabolismo , Amidoidrolases/metabolismo , Aquagliceroporinas/metabolismo , Nitrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Zygosaccharomyces/metabolismo , Ácido Acético/toxicidade , Acroleína/toxicidade , Amidoidrolases/genética , Antifúngicos/toxicidade , Aquagliceroporinas/genética , Deleção de Genes , Propanóis/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Zygosaccharomyces/efeitos dos fármacos , Zygosaccharomyces/genética , Zygosaccharomyces/crescimento & desenvolvimento
18.
Biochem Pharmacol ; 79(11): 1581-8, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20138026

RESUMO

Heat shock protein 90 (Hsp90), a highly conserved molecular chaperone, is one of the most promising targets for cancer drug development. Whether any resistance to these Hsp90 inhibitor drugs could arise by Hsp90 mutation is still unknown. Yeast is readily engineered so that its essential Hsp90 function is provided by either isoform of the human cytosolic Hsp90, Hsp90alpha or Hsp90beta. However, its high intrinsic resistance to most drugs poses a major obstacle to the use of such Hsp90alpha- or Hsp90beta-expressing yeast cells as a model system to analyse whether drug resistance might arise by Hsp90 mutation. In order to overcome this problem, we have generated a strain that is both hypersensitive to Hsp90 inhibitors as it lacks multiple drug resistance genes, and in which different heterologous and mutant Hsp90s can be expressed by plasmid exchange. It is not rendered appreciably stress sensitive when made to express Hsp90alpha or Hsp90beta as its sole form of Hsp90. Should there be any development of resistance to the Hsp90 drugs now in cancer clinic trials, this system can provide a rapid initial test of whether any single nucleotide polymorphism appearing within the coding regions of Hsp90alpha or Hsp90beta could be a contributory factor in this resistance. We have used this strain to demonstrate that significant levels of resistance to the Hsp90 inhibitors radicicol and 17-allylamino-demethoxygeldanamycin (17-AAG) are generated as a result of the same single point mutation within the native Hsp90 of yeast (A107N), the human Hsp90alpha (A121N) and the human Hsp90beta (A116N).


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Farmacogenética/métodos , Benzoquinonas/farmacologia , Humanos , Lactamas Macrocíclicas/farmacologia , Macrolídeos/farmacologia , Mutação Puntual , Isoformas de Proteínas , Leveduras/efeitos dos fármacos , Leveduras/genética
19.
Mol Cell ; 37(3): 333-43, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20159553

RESUMO

Saccharomyces WEE1 (Swe1), the only "true" tyrosine kinase in budding yeast, is an Hsp90 client protein. Here we show that Swe1(Wee1) phosphorylates a conserved tyrosine residue (Y24 in yeast Hsp90 and Y38 in human Hsp90alpha) in the N domain of Hsp90. Phosphorylation is cell-cycle associated and modulates the ability of Hsp90 to chaperone a selected clientele, including v-Src and several other kinases. Nonphosphorylatable mutants have normal ATPase activity, support yeast viability, and productively chaperone the Hsp90 client glucocorticoid receptor. Deletion of SWE1 in yeast increases Hsp90 binding to its inhibitor geldanamycin, and pharmacologic inhibition/silencing of Wee1 sensitizes cancer cells to Hsp90 inhibitor-induced apoptosis. These findings demonstrate that Hsp90 chaperoning of distinct client proteins is differentially regulated by specific posttranslational modification of a unique subcellular pool of the chaperone, and they provide a strategy to increase the cellular potency of Hsp90 inhibitors.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Tirosina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Tirosina/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Dimerização , Proteínas de Choque Térmico HSP90/fisiologia , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Interferência de RNA , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação
20.
Microbiology (Reading) ; 155(Pt 10): 3304-3311, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19608606

RESUMO

When grown at pH 4.5, Saccharomyces cerevisiae acquires a resistance to inhibitory acetic acid levels ( approximately 0.1 M) by destabilizing Fps1p, the plasma membrane aquaglyceroporin that provides the main route for passive diffusional entry of this acid into the cell. Acetic acid stress transiently activates Hog1p mitogen-activated protein (MAP) kinase, which, in turn, phosphorylates Fps1p in order to target this channel for endocytosis and degradation in the vacuole. This activation of Hog1p is abolished with the loss of Fps1p, but is more sustained when cells express an open Fps1p channel refractory to destabilization. At neutral pH, much higher levels of acetate ( approximately 0.5 M) are needed to inhibit growth. Under such conditions, the loss of Fps1p does not abolish, but merely slows, the activation of Hog1p. Acetate stress also activates the Slt2(Mpk1)p cell integrity MAP kinase, possibly by causing inhibition of glucan synthase activity. In pH 4.5 cultures, this acetate activation of Slt2p is strongly enhanced by the loss of Fps1p and is dependent upon the cell surface sensor Wsc1p. Lack of Fps1p therefore exerts opposing effects on the activation of Hog1p and Slt2p in yeast exposed to acetic acid stress.


Assuntos
Ácido Acético/toxicidade , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Deleção de Genes , Proteínas de Membrana/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...