Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Clin Invest ; 73(5): 1392-9, 1984 May.
Artigo em Inglês | MEDLINE | ID: mdl-6609171

RESUMO

The kinetics of activation of human Factor IX by human Factor XIa was studied by measuring the release of a trichloroacetic acid-soluble tritium-labeled activation peptide from Factor IX by a modification of a method described for bovine Factor IX activation by Zur and Nemerson (Zur, M., and Y. Nemerson, 1980, J. Biol. Chem., 255:5703-5707). Initial rates of trichloroacetic acid-soluble 3H-release were linear over 10-30 min of incubation of Factor IX (88 nM) with CaCl2 (5 mM) and with pure (greater than 98%) Factor XIa (0.06-1.3 nM), which was prepared by incubating human Factor XI with bovine Factor XIIa. Release of 3H preceded the appearance of Factor IXa activity, and the percentage of 3H released remained constant when the mole fraction of 3H-labeled and unlabeled Factor IX was varied and the total Factor IX concentration remained constant. A linear correlation (r greater than 0.98, P less than 0.001) was observed between initial rates of 3H-release and the concentration of Factor XIa, measured by chromogenic assay and by radioimmunoassay and added at a Factor IX:Factor XIa molar ratio of 70-5,600. Kinetic parameters, determined by Lineweaver-Burk analysis, include Km (0.49 microM) of about five- to sixfold higher than the plasma Factor IX concentration, which could therefore regulate the reaction. The catalytic constant (kcat) (7.7/s) is approximately 20-50 times higher than that reported by Zur and Nemerson (Zur, M., and Y. Nemerson, 1980, J. Biol. Chem., 255:5703-5707) for Factor IX activation by Factor VIIa plus tissue factor. Therefore, depending on the relative amounts of Factor XIa and Factor VIIa generated in vivo and other factors which may influence reaction rates, these kinetic parameters provide part of the information required for assessing the relative contributions of the intrinsic and extrinsic pathways to Factor IX activation, and suggest that the Factor XIa catalyzed reaction is physiologically significant.


Assuntos
Fator IX/metabolismo , Fator XI/fisiologia , Fator XIa , Humanos , Cinética , Trítio
5.
J Biol Chem ; 253(14): 5174-9, 1978 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-149792

RESUMO

An in vitro replication system reconstituted from six purified T4 bacteriophage proteins, each of which is essential for T4 DNA replication in vivo, requires ATP. Because of the complexity of the complete system, we examine in this report the involvement of ATP in two subsystems of the overall DNA synthesis reaction. One subsystem consists of the T4 DNA polymerase (gene 43 protein) and its "accessory proteins," the gene 44/62 and 45 products. An even simpler subsystem consists of the gene 44/62 and 45 proteins alone, which together have a DNA-dependent ATPase activity. The combination of the 44/62 and 45 proteins hydrolyze ATP to ADP and inorganic phosphate in the presence of DNA. These essential accessory proteins have been previously shown to increase T4 DNA polymerase activity on primed, single-stranded DNA templates. In this report we use nucleotide analogues to demonstrate that this polymerase stimulation requires hydrolysis of the beta,gamma-phosphate bond of ATP. However, our data suggest that the mechanism of accessory protein stimulation is such that less than 1 ATP molecule need be hydrolyzed per 10 deoxyribonucleotides incorporated by the DNA polymerase into DNA.


Assuntos
Trifosfato de Adenosina/metabolismo , Colífagos/enzimologia , DNA Polimerase Dirigida por DNA/metabolismo , Genes Virais , Proteínas Virais/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/farmacologia , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...