Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(19): 10551-10567, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37713613

RESUMO

For DNA replication initiation in Bacteria, replication initiation proteins bind to double-stranded DNA (dsDNA) and interact with single-stranded DNA (ssDNA) at the replication origin. The structural-functional relationship of the nucleoprotein complex involving initiator proteins is still elusive and different models are proposed. In this work, based on crosslinking combined with mass spectrometry (MS), the analysis of mutant proteins and crystal structures, we defined amino acid residues essential for the interaction between plasmid Rep proteins, TrfA and RepE, and ssDNA. This interaction and Rep binding to dsDNA could not be provided in trans, and both are important for dsDNA melting at DNA unwinding element (DUE). We solved two crystal structures of RepE: one in a complex with ssDNA DUE, and another with both ssDNA DUE and dsDNA containing RepE-specific binding sites (iterons). The amino acid residues involved in interaction with ssDNA are located in the WH1 domain in stand ß1, helices α1 and α2 and in the WH2 domain in loops preceding strands ß1' and ß2' and in these strands. It is on the opposite side compared to RepE dsDNA-recognition interface. Our data provide evidence for a loop-back mechanism through which the plasmid replication initiator molecule accommodates together dsDNA and ssDNA.


Assuntos
DNA de Cadeia Simples , Proteínas de Ligação a DNA , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , Plasmídeos/genética , DNA/genética , DNA/metabolismo , Aminoácidos/genética
2.
Cell Rep ; 23(9): 2758-2769, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29847804

RESUMO

Although aneuploidy is found in the majority of tumors, the degree of aneuploidy varies widely. It is unclear how cancer cells become aneuploid or how highly aneuploid tumors are different from those of more normal ploidy. We developed a simple computational method that measures the degree of aneuploidy or structural rearrangements of large chromosome regions of 522 human breast tumors from The Cancer Genome Atlas (TCGA). Highly aneuploid tumors overexpress activators of mitotic transcription and the genes encoding proteins that segregate chromosomes. Overexpression of three mitotic transcriptional regulators, E2F1, MYBL2, and FOXM1, is sufficient to increase the rate of lagging anaphase chromosomes in a non-transformed vertebrate tissue, demonstrating that this event can initiate aneuploidy. Highly aneuploid human breast tumors are also enriched in TP53 mutations. TP53 mutations co-associate with the overexpression of mitotic transcriptional activators, suggesting that these events work together to provide fitness to breast tumors.


Assuntos
Aneuploidia , Neoplasias da Mama/genética , Anáfase/genética , Animais , Neoplasias da Mama/patologia , Instabilidade Cromossômica , Cromossomos Humanos/genética , Embrião não Mamífero/metabolismo , Feminino , Frequência do Gene/genética , Humanos , Mitose/genética , Modelos Genéticos , Mutação/genética , Fenótipo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Xenopus/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...