Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 33(2): 242-53, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25950948

RESUMO

Mild traumatic brain injury (mTBI) has subtle effects on several brain functions that can be difficult to assess and follow up. We investigated the impact of mTBI on the perception of sine-wave gratings defined by first- and second-order characteristics. Fifteen adults diagnosed with mTBI were assessed at 15 days, 3 months, and 12 months postinjury. Fifteen matched controls followed the same testing schedule. Reaction times (RTs) for flicker detection and motion direction discrimination were measured. Stimulus contrast of first- and second-order patterns was equated to control for visibility, and correct-response RT means, standard deviations (SDs), medians, and interquartile ranges (IQRs) were calculated. The level of symptoms was also evaluated to compare it to RT data. In general in mTBI, RTs were longer, and SDs as well as IQRs larger, than those of controls. In addition, mTBI participants' RTs to first-order stimuli were shorter than those to second-order stimuli, and SDs as well as IQRs larger for first- than for second-order stimuli in the motion condition. All these observations were made over the three sessions. The level of symptoms observed in mTBI was higher than that of control participants, and this difference did also persist up to 1 year after the brain injury, despite an improvement. The combination of RT measures with particular stimulus properties is a highly sensitive method for measuring mTBI-induced visuomotor anomalies and provides a fine probe of the underlying mechanisms when the brain is exposed to mild trauma.


Assuntos
Lesões Encefálicas/fisiopatologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Feminino , Seguimentos , Humanos , Masculino , Percepção de Movimento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto Jovem
2.
J Vis ; 9(1): 13.1-10, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19271883

RESUMO

To examine the respective roles of central and peripheral vision in the control of posture, body sway amplitude (BSA) and postural perturbations (given by velocity root mean square or vRMS) were calculated in a group of 19 healthy young adults. The stimulus was a 3D tunnel, either static or moving sinusoidally in the anterior-posterior direction. There were nine visual field conditions: four central conditions (4, 7, 15, and 30 degrees); four peripheral conditions (central occlusions of 4, 7, 15, and 30 degrees); and a full visual field condition (FF). The virtual tunnel respected all the aspects of a real physical tunnel (i.e., stereoscopy and size increase with proximity). The results show that, under static conditions, central and peripheral visual fields appear to have equal importance for the control of stance. In the presence of an optic flow, peripheral vision plays a crucial role in the control of stance, since it is responsible for a compensatory sway, whereas central vision has an accessory role that seems to be related to spatial orientation.


Assuntos
Meio Ambiente , Postura/fisiologia , Visão Ocular/fisiologia , Campos Visuais/fisiologia , Feminino , Humanos , Masculino , Oscilometria , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...